Journal of Signal Processing Systems

, Volume 62, Issue 2, pp 187–203 | Cite as

Dynamic Frequency-Band Reallocation and Allocation: from Satellite-Based Communication Systems to Cognitive Radios

  • Amir Eghbali
  • Håkan Johansson
  • Per Löwenborg
  • Heinz G. Göckler
Article

Abstract

This paper discusses two approaches for the baseband processing part of cognitive radios. These approaches can be used depending on the availability of (i) a composite signal comprising several user signals or, (ii) the individual user signals. The aim is to introduce solutions which can support different bandwidths and center frequencies for a large set of users and at the cost of simple modifications on the same hardware platform. Such structures have previously been used for satellite-based communication systems and the paper aims to outline their possible applications in the context of cognitive radios. For this purpose, dynamic frequencyband allocation (DFBA) and reallocation (DFBR) structures based on multirate building blocks are introduced and their reconfigurability issues with respect to the required reconfigurability measures in cognitive radios are discussed.

Keywords

Satellite-based communication systems Cognitive radios Multirate systems Transmultiplexers Filter banks 

References

  1. 1.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRefGoogle Scholar
  2. 2.
    Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRefGoogle Scholar
  3. 3.
    Huang, J., Berry, R. A., & Honig, M. L. (2005). Spectrum sharing with distributed interference compensation. In Proc. IEEE DySPAN, November 2005, pp. 88–93.Google Scholar
  4. 4.
    Cabric, D., ÓDonnell, I. D., Chen, M. S. W., & Brodersen, R. W. (2006). Spectrum sharing radios. IEEE Circuits and Systems Magazine, 6(2), 30–45.CrossRefGoogle Scholar
  5. 5.
    Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal (Elsevier), 50, 2127–2159.MATHCrossRefGoogle Scholar
  6. 6.
    Leaves, P., Moessner, K., Tafazolli, R., Grandblaise, D., Bourse, D., Tonjes, R., et al. (2004). Dynamic spectrum allocation in composite reconfigurable wireless networks. IEEE Communications Magazine, 42(5), 72–81.CrossRefGoogle Scholar
  7. 7.
    Jondral, F. K. (2005). Software-defined radio—basics and evolution to cognitive radio. EURASIP Journal on Wireless Communication and Networking, 5, 275–283.CrossRefGoogle Scholar
  8. 8.
    Farserotu, J., & Prasad, R. (2000). A survey of future broadband multimedia satellite systems, issues and trends. IEEE Communications Magazine, 38(6), 128–133.CrossRefGoogle Scholar
  9. 9.
    Wittig, M. (2000). Satellite on-board processing for multimedia applications. IEEE Communications Magazine, 38(6), 134–140.CrossRefGoogle Scholar
  10. 10.
    Re, E. D., & Pierucci, L. (2002). Next-generation mobile satellite networks. IEEE Communications Magazine, 40(9), 150–159.CrossRefGoogle Scholar
  11. 11.
    Arbesser-Rastburg, B., Bellini, R., Coromina, F., Gaudenzi, R. D., del Rio, O., Hollreiser, M., et al. (2002). R&D directions for next generation broadband multimedia systems: An ESA perspective. In Proc. 20th AIAA int. commun. satellite syst. conf. exhibit, Montreal, Canada.Google Scholar
  12. 12.
    Nguyen, T., Hant, J., Taggart, D., Tsang, C.-S., Johnson, D. M., & Chuang, J.-C. (2002). Design concept and methodology for the future advanced wideband satellite system. In Proc. IEEE military commun. conf., MILCOM 2002 (Vol. 1, pp. 189–194). USA.Google Scholar
  13. 13.
    Johansson, H., & Löwenborg, P. (2007). Flexible frequency-band reallocation networks using variable oversampled complex-modulated filter banks. EURASIP Journal on Advanced Signal Processing, 2007 (Article ID 63714), 15.Google Scholar
  14. 14.
    Abdulazim, M. N., & Göckler, H. G. (2006). Flexible bandwidth reallocation MDFT SBC-FDFMUX filter bank for future bent-pipe FDM satellite systems. In 9th int. workshop on signal process. for space commun.s (SPSC 2006), Noordwijk, Netherlands.Google Scholar
  15. 15.
    Boucheret, M. L., Mortensen, I., & Favaro, H. (1999). Fast convolution filter banks for satellite payloads with on-board processing. IEEE Journal on Selected Areas in Communications, 17(2), 238–248.CrossRefGoogle Scholar
  16. 16.
    Göckler, H. G., & Felbecker, B. (1999). Digital on-board FDM-demultiplexing without restrictions on channel allocation and bandwidth. In 7th int. workshop digital sign. process. techn. for space appl. Noordwijk.Google Scholar
  17. 17.
    Chiassarini, G., & Gallinaro, G. (1995). Frequency domain switching: Algorithms, performances, implementation aspects. In 7th Tyrrhenian int. workshop digital comm. Viareggio, Italy.Google Scholar
  18. 18.
    Rosenbaum, L., Johansson, H., & Löwenborg, P. (2006). Oversampled complex-modulated causal IIR filter banks for flexible frequency-band reallocation networks. In Proc. XIV Eur. signal process. conf. Florence, Italy.Google Scholar
  19. 19.
    Abdulazim, M. N., & Göckler, H. G. (2005). Efficient digital on-board de- and remultiplexing of FDM signals allowing for flexible bandwidth allocation. In Proc. 23rd int. comm. satellite systems conf. Rome, Italy.Google Scholar
  20. 20.
    Abdulazim, M. N., Kurbiel, T., & Göckler, H. G. (2007). Modified DFT SBC-FDFMUX filter bank systems for flexible frequency reallocation. In Proc. EURASIP 15th Eur. signal process. conference (EUSIPCO 2007) (pp. 60–64). Poznan, Poland.Google Scholar
  21. 21.
    Göckler, H. G., & Eyssele, H. (1992). Study of on-board digital FDM-demultiplexing for mobile SCPC satellite communications (part I and II). European Transactions on Telecommunications (ETT), 3, 7–30.CrossRefGoogle Scholar
  22. 22.
    Göckler, H. G., & Abdulazim, M. N. (2005). Joint oversampling FDM demultiplexing and perfectly reconstructing SBC filter bank for two channels. In Proc. Eur. signal process. conf. Antalya, Turkey.Google Scholar
  23. 23.
    Abdulazim, M. N., & Göckler, H. G. (2005). Design options of the versatile two-channel SBC-FDFMUX filter bank. In Proc. Eur. conf. circuit theory design. Cork, Ireland.Google Scholar
  24. 24.
    Göckler, H. G., & Abdulazim, M. N. (2007). Tree-structured MIMO FIR filter banks for flexible frequency reallocation. In Proc. int. symp. image signal process. analysis. Istanbul, Turkey.Google Scholar
  25. 25.
    Eghbali, A., Johansson, H., & Löwenborg, P. (2007). An arbitrary bandwidth transmultiplexer and its application to flexible frequency-band reallocation networks. In Proc. Eur. conf. circuit theory design. Seville, Spain.Google Scholar
  26. 26.
    Eghbali, A., Johansson, H., & Löwenborg, P. (2008). A multimode transmultiplexer structure. IEEE Transactions on Circuits and Systems II, 55(3), 279–283.CrossRefGoogle Scholar
  27. 27.
    Eghbali, A., Johansson, H., & Löwenborg, P. (2008). A Farrow-structure-based multi-mode transmultiplexer. In Proc. IEEE int. symp. circuits syst. Seattle, Washington, USA.Google Scholar
  28. 28.
    Eghbali, A., Johansson, H., & Löwenborg, P. (2008). A class of multimode transmultiplexers based on the Farrow structure. IEEE Transactions on Circuits and Systems I, (in press).Google Scholar
  29. 29.
    Eghbali, A., Johansson, H., & Löwenborg, P. (2009). On the filter design for a class of multimode transmultiplexers. In Proc. IEEE int. symp. circuits syst. Taipei, Taiwan.Google Scholar
  30. 30.
    Cabric, D., & Brodersen, R. W. (2005). Physical layer design issues unique to cognitive radio systems. In Proc. IEEE personal indoor and mobile radio communications (PIMRC).Google Scholar
  31. 31.
    Ganesan, G., & Li, Y. G. (2005). Cooperative spectrum sensing in cognitive radio networks. In Proc. IEEE DySPAN (pp. 137–143).Google Scholar
  32. 32.
    Yuan, Y., Bahl, P., Chandra, R., Chou, P. A., Ferrell, J. I., Moscibroda, T., et al. (2007). KNOWS: Cognitive radio networks over white spaces. In Proc. IEEE DySPAN (pp. 416–427).Google Scholar
  33. 33.
    Eghbali, A., Johansson, H., & Löwenborg, P. (2008). Flexible frequency-band reallocation: Complex versus real. Circuits, Systems, and Signal Processing, (in press).Google Scholar
  34. 34.
    Eghbali, A., Johansson, H., & Löwenborg, P. (2007). Flexible frequency-band reallocation MIMO networks for real signals. In Proc. int. symp. image signal process. analysis. Istanbul, Turkey.Google Scholar
  35. 35.
    Mitra, S. K. (2006). Digital signal processing: A computer based approach. New York: McGraw-Hill.Google Scholar
  36. 36.
    Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs: Prentice-Hall.MATHGoogle Scholar
  37. 37.
    Fliege, N. J. (1994). Modified DFT polyphase SBC filter banks with almost perfect reconstruction. In Proc. IEEE int. conf. acoust. speech, signal process. (pp. 149–152). Adelaide, Australia.Google Scholar
  38. 38.
    Karp, T. (1997). Modifizierte DFT-filterbänke. Ph.D. dissertation, Dbüsseldorf, VDI-Verlag.Google Scholar
  39. 39.
    Karp, T., & Fliege, N. J. (1999). Modified DFT filter banks with perfect reconstruction. IEEE Transactions on Circuits and Systems II, 46(11), 1404–1414.MATHCrossRefGoogle Scholar
  40. 40.
    Heideman, M. T., & Burrus, C. S. (1986). On the number of multiplications necessary to compute a length-2n DFT. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-34, 91–95.CrossRefMathSciNetGoogle Scholar
  41. 41.
    Mansour, M. F. (2006). On the odd-DFT and its applications to DCT/IDCT computation. IEEE Transactions on Signal Processing, 54, 2819–2822.CrossRefGoogle Scholar
  42. 42.
    Fliege, N. J. (1993). Computational efficiency of modified DFT-polyphase filter banks. In Proc. 27th Asilomar conf. signals, syst., and computers (pp. 1296–1300). Asilomar.Google Scholar
  43. 43.
    Karp, T., & Fliege, N. J. (1996). Computationally efficient realization of MDFT filter banks. In Proc EURASIP eur. signal process. conf. Trieste, Italy.Google Scholar
  44. 44.
    Yuan, Y., Bahl, P., Chandra, R., Moscibroda, T., Narlanka, S., & Wu, Y. (2007). Allocating dynamic time-spectrum blocks in cognitive radio networks. In Proc. ACM MobiHoc.Google Scholar
  45. 45.
    Ho, C. Y.-F., Ling, B. W.-K., Liu, Y.-Q., Teo, K.-L., & Tam, P. K.-S. (2005). Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming. IEEE Transactions on Signal Processing, 53(7), 2598–2603.CrossRefMathSciNetGoogle Scholar
  46. 46.
    Xie, X. M., Chan, S. C., & Yuk, T. I. (2006). Design of linear-phase recombination nonuniform filter banks. IEEE Transactions on Signal Processing, 54(7), 2809–2814.CrossRefGoogle Scholar
  47. 47.
    Ding, Y. S. F., & Chen, T. (2006). 2-norm based recursive design of transmultiplexers with designable filter length. Circuits, Systems and Signal Processing, 25(4), 447–462.MATHCrossRefGoogle Scholar
  48. 48.
    Chen, T., Qiu, L., & Bai, E.-W. (1998). General multirate building structures with application to nonuniform filter banks. IEEE Transactions on Circuits and Systems II, 45(8), 948–958.CrossRefGoogle Scholar
  49. 49.
    Liu, T., & Chen, T. (2001). Design of multichannel nonuniform transmultiplexers using general building blocks. IEEE Transactions on Signal Processing, 49(1), 91–99.CrossRefGoogle Scholar
  50. 50.
    Farrow, C. W. (1988). A continuously variable digital delay element. In Proc. IEEE int. symp. circuits syst. (Vol. 3, pp. 2641–2645). Espoo, Finland.Google Scholar
  51. 51.
    Johansson, H., & Löwenborg, P. (2003). On the design of adjustable fractional delay FIR filters. IEEE Transactions on Circuits and Systems II, 50(4), 164–169.CrossRefGoogle Scholar
  52. 52.
    Johansson, H., & Gustafsson, O. (2005). Linear-phase FIR interpolation, decimation, and M-th band filters utilizing the Farrow structure. IEEE Transactions on Circuits and Systems I, 52(10), 2197–2207.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amir Eghbali
    • 1
  • Håkan Johansson
    • 1
  • Per Löwenborg
    • 1
  • Heinz G. Göckler
    • 2
  1. 1.Division of Electronics Systems, Department of Electrical EngineeringLinköping UniversityLinköpingSweden
  2. 2.Digital Signal Processing Group (DISPO)Ruhr-Universität BochumBochumGermany

Personalised recommendations