Journal of Signal Processing Systems

, Volume 58, Issue 1, pp 87–103 | Cite as

Binary Adders on Quantum-Dot Cellular Automata

Article

Abstract

This article describes the design of adder units on quantum-dot cellular automata (QCA) nanotechnology, which promises very dense circuits and high operating frequencies, using a single homogeneous layer of the basic cells. We construct pipelined structures without the earlier noise problems, avoided by careful clocking organization, and the modular layouts are verified with the QCADesigner coherence vector simulation. Our designs occupy only a fraction of area compared to the previous noise rejecting design, while having also superior performance, and it is shown that the wiring overhead of the arithmetic circuits on QCA grows with square-law dependence on the operand word length. Power analysis at the fundamental Landauer’s limit shows, that the operating frequencies will indeed be bound by the energy dissipated in information erasure: under irreversible operation, the clock rates of the adder units on molecular QCA are only tens of gigahertz, while the switching speed of the technology is in the terahertz regime.

Keywords

Low-power design Nanotechnology Quantum-dot cellular automata Arithmetic  Reversible computing 

Notes

Acknowledgements

The authors would like to thank Prof. C. S. Lent, Univ. Notre Dame, for his inspiring keynote during IEEE SiPS 2006, which initiated the work reported in this paper. In addition, the authors thank the anonymous reviewers for their constructive comments to improve this paper.

References

  1. 1.
    Lent, C. (2006). Molecular quantum-dot cellular automata. In Proc. IEEE workshop signal processing systems design and implementation, Banff, AB, Canada, 2–4 October 2006, keynote talk.Google Scholar
  2. 2.
    Lent, C., Tougaw, P., & Porod, W. (1994). Quantum cellular automata: The physics of computing with arrays of quantum dot molecules. In Proc. workshop physics and compution (pp. 5–13), Dallas, TX, 17–20 November 1994.Google Scholar
  3. 3.
    Lent, C., & Tougaw, P. (1997). A device architecture for computing with quantum dots. Proceedings of the IEEE, 85(4), 541–557 (April).CrossRefGoogle Scholar
  4. 4.
    Snider, G., Orlov, A., Amlani, I., Bernstein, G., Lent, C., Merz, J., et al. (1999). Quantum-dot cellular automata. In Dig. papers of microprocesses and nanotechnology conf. (pp. 90–91), Yokohama, Japan, 6–8 July 1999.Google Scholar
  5. 5.
    Orlov, A., Kummamuru, R., Ramasubramaniam, R., Lent, C., Bernstein, G., & Snider, G. (2001). Clocked quantum-dot cellular automata devices: Experimental studies. In Proc. IEEE conf. nanotechnology (pp. 425–430), Maui, HI, 28–30 October 2001.Google Scholar
  6. 6.
    Kummamuru, R., Orlov, A., Ramasubramaniam, R., Lent, C., Bernstein, G., & Snider, G. (2003). Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Transactions on Electron Devices, 50(9), 1906–1913 (September).CrossRefGoogle Scholar
  7. 7.
    Kim, K., Wu, K., & Karri, R. (2007). The robust QCA adder designs using composable QCA building blocks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(1), 176–183 (January).CrossRefGoogle Scholar
  8. 8.
    Hänninen, I., & Takala, J. (2007). Robust adders based on quantum-dot cellular automata. In Proc. IEEE int. conf. application-specific systems, architectures and processors (pp. 391–396), Montréal, QC, Canada, 8–11 July 2007.Google Scholar
  9. 9.
    Walus, K., & Jullien, G. (2006). Design tools for an emerging SoC technology: Quantum-dot cellular automata. Proceedings of the IEEE, 94(6), 1225–1244 (June).CrossRefGoogle Scholar
  10. 10.
    QCADesigner (2007) QCADesigner website. University of Calgary ATIPS Laboratory. http://www.qcadesigner.ca.
  11. 11.
    Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5, 183–191.MATHMathSciNetGoogle Scholar
  12. 12.
    Lent, C., Liu, M., Lu, Y. (2006). Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology, 17(16), 4240–4251 (August).CrossRefGoogle Scholar
  13. 13.
    Vetteth, A., Walus, K., Dimitrov, V., & Jullien, G. (2002). Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. In Proc. IEEE conf. emerging telecommunications technologies, Dallas, TX, 23–24 September 2002.Google Scholar
  14. 14.
    Fijany, A., Toomarian, N., Modarress, K., & Spotnitz, M. (2003). Bit-serial adder based on quantum dots. NASA’s Jet Propulsion Laboratory, Pasadena, CA, Technical Report NPO-20869.Google Scholar
  15. 15.
    Wang, W., Walus, K., & Jullien, G. (2003). Quantum-dot cellular automata adders. In Proc. IEEE conf. nanotechnology (pp. 461–464), San Francisco, CA, 11–14 August 2003.Google Scholar
  16. 16.
    Zhang, R., Walus, K., Wang, W., & Jullien, G. (2004). A method of majority logic reduction for quantum cellular automata. IEEE Transactions on Nanotechnology, 3(4), 443–450 (December).CrossRefGoogle Scholar
  17. 17.
    Walus, K., Jullien, G., & Dimitrow, V. (2003). Computer arithmetic structures for quantum cellular automata. In Conf. Rec. 37th Asilomar Conf. Signals, Systems and Computers (pp. 1435–1439), Pacific Grove, CA, 9–12 November 2003.Google Scholar
  18. 18.
    Cho, H., & Swartzlander, E. (2007). Serial parallel multiplier design in quantum-dot cellular automata. In Proc. IEEE symp. computer arithmetic (pp. 7–15), Montepellier, France, 25–27 June 2007.Google Scholar
  19. 19.
    Zhang, R., Walus, K., Wang, W., & Jullien, G. (2005). Performance comparison of quantum-dot cellular automata adders. In IEEE int. symp. circuits and systems (pp. 2522–2526), Kobe, Japan, 23–26 May 2005.Google Scholar
  20. 20.
    Cho, H., & Swartzlander, E. (2007). Adder designs and analyses for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 6(3), 374–383 (May).CrossRefGoogle Scholar
  21. 21.
    Janulis, J., Tougaw, P., Henderson, S., & Johnson, E. (2004). Serial bit-stream analysis using quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 3(1), 158–164 (March).CrossRefGoogle Scholar
  22. 22.
    Hänninen, I., & Takala, J. (2007). Pipelined array multiplier based on quantum-dot cellular automata. In Proc. European conf. circuit theory and design (pp. 938–941), Seville, Spain, 26–30 August 2007.Google Scholar
  23. 23.
    Fijany, A., & Toomarian, B. (2001). New design for quantum dots cellular automata to obtain fault tolerant logic gates. Journal of Nanoparticle Research, 3(1), 27–37 (February).CrossRefGoogle Scholar
  24. 24.
    Liu, M., & Lent, C. (2007). Reliability and defect tolerance in metallic quantum-dot cellular automata. Journal of Electronic Testing, 23(2–3), 211–218 (June).CrossRefGoogle Scholar
  25. 25.
    Wang, Y., & Lieberman, M. (2004). Thermodynamic behavior of molecular-scale quantum-dot cellular automata QCA wires and logic devices. IEEE Transactions on Nanotechnology, 3(3), 368–376 (September).CrossRefGoogle Scholar
  26. 26.
    Wei, T., Wu, K., Karri, R., & Orailoglu, A. (2005). Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands. In Proc. Asia and South Pacific design automation conference (pp. 1192–1195), Shanghai, China, 18–21 January 2005.Google Scholar
  27. 27.
    Momenzadeh, M., Huang, J., Tahoori, M., & Lombardi, F. (2005). On the evaluation of scaling of QCA devices in the presence of defects at manufacturing. IEEE Transactions on Nanotechnology, 4(6), 740–743 (November).CrossRefGoogle Scholar
  28. 28.
    Khatun, M., Barclay, T., Sturzu, I., & Tougaw, P. (2006). Fault tolerance properties in quantum-dot cellular automata devices. Journal of Physics. D, Applied Physics, 39(8), 1489–1494 (April).CrossRefGoogle Scholar
  29. 29.
    Milosavljevic, D., & Cotofana, S. (2006). A method to analyze the fault tolerance of molecular quantum-dot cellular automata systems. In Proc. int. semiconductor conference (pp. 399–402), Sinaia, Romania, 27–29 September 2006.Google Scholar
  30. 30.
    Schulhof, G., Walus, K., & Jullien, G. (2007). Simulation of random cell displacements in QCA. ACM Journal of Emerging Technologies in Computing Systems, 3(1), 1–14 (April).CrossRefGoogle Scholar
  31. 31.
    Huang, J., Momenzadeh, M., & Lombardi, F. (2007). On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. Journal of Electronic Testing, 23(2–3), 163–174 (June).CrossRefGoogle Scholar
  32. 32.
    Huang, J., Momenzadeh, M., & Lombardi, F. (2007). Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. Integration, the VLSI Journal, 40(4), 503–515 (July).Google Scholar
  33. 33.
    Bhanja, S., Ottavi, M., Lombardi, F., & Pontarelli, S. (2007). QCA circuits for robust coplanar crossing. Journal of Electronic Testing, 23(2–3), 193–210 (June).CrossRefGoogle Scholar
  34. 34.
    Patitz, Z., Park, N., Choi, M., & Meyer, F. (2005). Qca-based majority gate design under radius of effect-induced faults. In Proc. IEEE int. symp. defect and fault tolerance in VLSI systems (pp. 217–225), Monterey, CA, 3–5 October 2005.Google Scholar
  35. 35.
    Kim, K., Wu, K., & Karri, R. (2005). Towards designing robust QCA architectures in the presence of sneak noise paths. In Proc. design, automation and test in Europe (pp. 1214–1219), Messe Munich, Germany, 7–11 March 2005.Google Scholar
  36. 36.
    Timler, J., & Lent, C. (2003). Maxwell’s demon and quantum-dot cellular automata. Journal of Applied Physics, 94, 1050–1060 (July).CrossRefGoogle Scholar
  37. 37.
    Bonci, L., & Macucci, M. (2005). Numerical investigation of energy dissipation in quantum cellular automaton circuits. In Proc. European conf. circuit theory and design (pp. II/239–II/242), Cork, Ireland, 29 August–1 September 2005.Google Scholar
  38. 38.
    Bonci, L., & Macucci, M. (2006). Analysis of power dissipation in clocked quantum cellular automaton circuits. In Proc. European solid state circuits conf. (pp. 58–61), Montreux, Switzerland, 18–22 September 2006.Google Scholar
  39. 39.
    Bennett, C. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17, 525–532.MATHCrossRefGoogle Scholar
  40. 40.
    Frost-Murphy, S., Ottavi, M., Frank, M., & DeBenedictis, E. (2006). On the design of reversible qdca systems. Sandia Nat. Lab., Albuquerque, NM, and Livermore, CA, Tech. Report SAND2006-5990, 2006.Google Scholar
  41. 41.
    Huang, J., Ma, X., & Lombardi, F. (2006). Energy analysis of QCA circuits for reversible computing. In Proc. IEEE conf. nanotechnology (pp. 39–42), Westin Cincinnati, OH, 17–20 July 2006.Google Scholar
  42. 42.
    Srivastava, S., Sarkar, S., & Bhanja, S. (2006). Power dissipation bounds and models for quantum-dot cellular automata circuits. In Proc. IEEE conf. nanotechnology (pp. 375–378), Westin Cincinnati, OH, 17–20 July 2006.Google Scholar
  43. 43.
    Sarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys, 32(1), 80–107 (March).CrossRefGoogle Scholar
  44. 44.
    Roy, S., & Saha, B. (2006). Minority gate oriented logic design with quantum-dot cellular automata. In Proc. int. conf. on cellular automata for research and industry (pp. 646–656), Perpignan, France, 20–23 September 2006.Google Scholar
  45. 45.
    Blair, E., & Lent, C. (2003). Quantum-dot cellular automata: an architecture for molecular computing. In Proc. int. conf. simulation of semiconductor processes and devices (pp. 14–18), Boston, MA, 3–5 September 2003.Google Scholar
  46. 46.
    Frost-Murphy, S., DeBenedictis, E., & Kogge, P. (2007). General floorplan for reversible quantum-dot cellular automata. In Proc. ACM int. conf. computing frontiers (pp. 77–81), Ischia, Italy, 7–9 May 2007.Google Scholar
  47. 47.
    Landauer, R. (1992). Information is physical. In Proc. workshop physics and computation (pp. 1–4), Dallas, TX, 2–4 October 1992.Google Scholar
  48. 48.
    Frank, M. (2005). Introduction to reversible computing: Motivation, progress, and challenges. In Proc. ACM int. conf. computing frontiers (pp. 385–390), Ischia, Italy, 4–6 May 2005.Google Scholar
  49. 49.
    Hu, W., Sarveswaran, K., Lieberman, M., & Bernstein, G. (2005). High-resolution electron beam lithography and DNA nano-patterning for molecular QCA. IEEE Transactions on Nanotechnology, 4(3), 312–316 (May).CrossRefGoogle Scholar
  50. 50.
    Frost, S., Dysart, T., Kogge, P., & Lent, C. (2004). Carbon nanotubes for quantum-dot cellular automata clocking. In Proc. IEEE conf. nanotechnology (pp. 171–173), Munich, Germany, 16–19 August 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer SystemsTampere University of TechnologyTampereFinland

Personalised recommendations