Advertisement

FPGA-based System for Real-Time Video Texture Analysis

  • Dimitris MaroulisEmail author
  • Dimitris K. Iakovidis
  • Dimitris Bariamis
Article

Abstract

This paper describes a novel system for real-time video texture analysis. The system utilizes hardware to extract second-order statistical features from video frames. These features are based on the Gray Level Co-occurrence Matrix (GLCM) and describe the textural content of the video frames. They can be used in a variety of video analysis and pattern recognition applications, such as remote sensing, industrial and medical. The hardware is implemented on a Virtex-XCV2000E-6 FPGA programmed in VHDL. It is based on an architecture that exploits the symmetry and the sparseness of the GLCM and calculates the features using integer and fixed point arithmetic. Moreover, it integrates an efficient algorithm for fast and accurate logarithm approximation, required in feature calculations. The software handles the video frame transfers from/to the hardware and executes only complementary floating point operations. The performance of the proposed system was experimentally evaluated using standard test video clips. The system was implemented and tested and its performance reached 133 and 532 fps for the analysis of CIF and QCIF video frames respectively. Compared to the state of the art GLCM feature extraction systems, the proposed system provides more efficient use of the memory bandwidth and the FPGA resources, in addition to higher processing throughput, that results in real time operation. Furthermore, its fundamental units can be used in any hardware application that requires sparse matrix representation or accurate and efficient logarithm estimation.

Keywords

Field programmable gate arrays Parallel architectures Pattern recognition Video signal processing Real-time system 

Notes

Acknowledgement

This work was realized under the framework of the Operational Program for Education and Vocational Training Project “Pythagoras” cofunded by European Union and the Ministry of National Education of Greece.

References

  1. 1.
    Deng, Y., & Manjunath, B. S. (2001). Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions Pattern Analysis and Machine Intelligence, 23(8), 800–810.CrossRefGoogle Scholar
  2. 2.
    Kim, J., & Chen, T. (2001). Multiple feature clustering for image sequence segmentation. Pattern Recognition Letters, 22, 1207–1217.CrossRefGoogle Scholar
  3. 3.
    Iakovidis, D. K., Maroulis, D. E., Karkanis, S. A., & Flaounas, I. N. (2003). Color texture recognition in video sequences using wavelet covariance features and support vector machines. In Proceedings of the 29th Euromicro Conference, Antalya, Turkey, September, pp. 199–204.Google Scholar
  4. 4.
    Ozyildiz, E., Krahnstöver, N., & Sharma, R. (2002). Adaptive texture and color segmentation for tracking moving objects. Pattern Recognition, 35(10), 2013–2029.zbMATHCrossRefGoogle Scholar
  5. 5.
    Shahrokni, A., Drummond, T., & Fua, P. (2004). Texture boundary detection for real-time tracking. Proceedings of the ECCV, 2, 566–577.Google Scholar
  6. 6.
    Wang, Y., Kim, J.-G., & Chang, S.-F. (2003). Content-based utility function prediction for real-time MPEG-4 transcoding. In Proceedings of the IEEE International Conference on Image Processing, Barcelona, Spain.Google Scholar
  7. 7.
    Soares, L. D., & Pereira, F. (2004). Adaptive shape and texture intra refreshment schemes for improved error resilience in object-based video coding. IEEE Transactions on Image Processing, 13, 662–676.CrossRefGoogle Scholar
  8. 8.
    Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 3, 610–621.CrossRefGoogle Scholar
  9. 9.
    Julesz, B. (1986). Texton gradients: the texton theory revisited. Biological Cybernetics, 54, 245–251.zbMATHCrossRefGoogle Scholar
  10. 10.
    Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Karras, D. A., & Tzivras, M. (2003). Computer aided tumor detection in endoscopic video using color wavelet features. IEEE Transaction on Information Technology in Biomedicine, 7, 141–152.CrossRefGoogle Scholar
  11. 11.
    Baraldi, A., & Parmiggiani, F. (1995). An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Transactions Geoscience and Remote Sensing, 33(2), 293–304.CrossRefGoogle Scholar
  12. 12.
    Haralick, R. M. (1988). Texture measures for carpet wear assessment. IEEE Transactions Pattern Analysis and Machine Intelligence, 10(1), 92–104.CrossRefGoogle Scholar
  13. 13.
    Latif-Amet, A., Ertuzun, A., & Ercil, A. (2000). An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image and Vision Computing, 18, 543–553.CrossRefGoogle Scholar
  14. 14.
    Fablet, R., & Bouthemy, P. (2003). Motion recognition using non parametric image motion models estimated from temporal and multiscale cooccurrence statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1619–1624.CrossRefGoogle Scholar
  15. 15.
    Smutek, D., Sara, R., Sucharda, P., Tjahjadi, T., & Svec, M. (2003). Image texture analysis of sonograms in chronic inflammations of thyroid gland. Ultrasound in Medicine and Biology, 29(11), 1531–1543.CrossRefGoogle Scholar
  16. 16.
    Ratha, N. K. (1996). A real-time matching system for large fingerprint databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 799–813.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Nguyen, D., Halupka, D., Aarabi, P., & Sheikholeslami, A. (2006). Real-time face detection and lip feature extraction using field-programmable gate arrays. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36(4), 902–912.CrossRefGoogle Scholar
  18. 18.
    Kotoulas, L., & Andreadis, I. (2005). Real-time computation of Zernike moments. IEEE Transactions on Circuits and Systems for Video Technology, 15(6), 801–809.CrossRefGoogle Scholar
  19. 19.
    Heikkinen, K., & Vuorimaa, P. (1999). Computation of Two Texture Features in Hardware. In Proceedings of the 10th International Conference on Image Analysis and Processing, Venice, Italy, September, pp. 125–129.Google Scholar
  20. 20.
    Tahir, M. A., Bouridane, A., & Kurugollu, F. (2005). An FPGA based coprocessor for GLCM and Haralick texture features and their application in prostate cancer classification. Analog Integrated Circuits and Signal Processing., 43, 205–215.CrossRefGoogle Scholar
  21. 21.
    Bariamis, D. G., Iakovidis, D. K., Maroulis, D. E., & Karkanis, S. A. (2004). An FPGA-based architecture for real time image feature extraction. Proceedings—International Conference on Pattern Recognition, 1, 801–804.Google Scholar
  22. 22.
    Iakovidis, D. K., Maroulis, D. E., & Bariamis, D. G. (2007). FPGA architecture for fast parallel computation of cooccurrence matrices. Microprocessors and Microsystems, 31(2), 160–165.CrossRefGoogle Scholar
  23. 23.
    Bariamis, D., Iakovidis, D. K., & Maroulis, D. (2006). Dedicated hardware for real-time computation of second-order statistical features for high resolution images. Lecture Notes in Computer Science, 4179, 67–77.CrossRefGoogle Scholar
  24. 24.
    Maroulis, D. E., Iakovidis, D. K., Karkanis, S. A., & Karras, D. A. (2003). CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames. Computer Methods and Programs in Biomedicine, 70(2), 151–166.CrossRefGoogle Scholar
  25. 25.
    Theodoridis, S., & Koutroumbas, K. (2000). Pattern recognition. San Diego: Academic.Google Scholar
  26. 26.
    Karkanis, S., Magoulas, G. D., & Theofanous, N. (2000). Image recognition and neuronal networks: intelligent systems for the improvement of imaging information. Minimal Invasive Therapy and Allied Technologies, 9, 225–230.Google Scholar
  27. 27.
    Chang, K. C. (1999). Digital systems design with VHDL and synthesis. IEEE Computer Society.Google Scholar
  28. 28.
    Celoxica Corporation. Retrieved from http://www.celoxica.com.
  29. 29.
    Hennesy, J. L., & Patterson, D. A. (2002). Computer architecture, a quantitative approach. San Francisco: Morgan Kaufmann.Google Scholar
  30. 30.
    Starzyk, J. A., & Guo, Y. (2001). An entropy-based learning hardware organization using FPGA. In Proceedings of the Southeastern Symposium on System Theory, pp. 1–5, Athens, OH.Google Scholar
  31. 31.
    Volder, J. E. (1959). The Cordic trigonometric computing technique. IRE Transactions on Electronic Computers, EC-8, 330–334.CrossRefGoogle Scholar
  32. 32.
    Andraka, R. (1998). A survey of Cordic algorithms for FPGA based computers. In Proceedings of the 1998 CM/SIGDA Sixth International Symposium on FPGAs. Monterey, CA, February, pp. 191–200.Google Scholar
  33. 33.
    Mandelbaum, D. M., & Mandelbaum, S. G. (1996). A fast, efficient parallel-acting method of generating functions defined by power series, including logarithm, exponential, and sine, cosine. IEEE Transactions on Parallel and Distributed Systems, 7(1), 33–45.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Mitchell Jr, J. N. (1962). Computer multiplication and division using binary logarithms. IRE Transactions Electronic Computers, 11, 512–517.Google Scholar
  35. 35.
    SanGregory, S. L., Siferd, R. E., Brother, C., & Gallagher, D. (1999). A fast, low-power logarithm approximation with CMOS VLSI implementation. In Proceedings of the IEEE Midwest Symposium on Circuits and Systems, August, 1999.Google Scholar
  36. 36.
    Combet, M., Zonneveld, H., & Verbeek, L. (1965). Computation of the base two logarithm of binary numbers. IEEE Transactions Electronic Computers, 14, 863–867.CrossRefGoogle Scholar
  37. 37.
    Hall, E. L., Lynch, D. D., & Dwyer III, S. J. (1970). Generation of products and quotients using approximate binary logarithms for digital filtering applications. IEEE Transactions Computers, 19, 97–105.zbMATHCrossRefGoogle Scholar
  38. 38.
    Wang, Y., Ostermann, J., & Zhang, Y. (2001). Digital video processing and communications. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  39. 39.
    Zeng, Y., Bi, G., & Kot, A. C. (2001). Combined polynomial transform and radix-q algorithm for MD discrete W transform. IEEE Transactions on Signal Processing, 49(3), 634–641.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dimitris Maroulis
    • 1
    Email author
  • Dimitris K. Iakovidis
    • 1
  • Dimitris Bariamis
    • 1
  1. 1.Real Time Systems and Image Analysis Laboratory, Department of Informatics and TelecommunicationsUniversity of AthensAthensGreece

Personalised recommendations