Journal of Signal Processing Systems

, Volume 55, Issue 1–3, pp 15–23

Automated Renal Cell Carcinoma Subtype Classification Using Morphological, Textural and Wavelets Based Features

  • Qaiser Chaudry
  • Syed Hussain Raza
  • Andrew N. Young
  • May D. Wang
Article

Abstract

We present a new image quantification and classification method for improved pathological diagnosis of human renal cell carcinoma. This method combines different feature extraction methodologies, and is designed to provide consistent clinical results even in the presence of tissue structural heterogeneities and data acquisition variations. The methodologies used for feature extraction include image morphological analysis, wavelet analysis and texture analysis, which are combined to develop a robust classification system based on a simple Bayesian classifier. We have achieved classification accuracies of about 90% with this heterogeneous dataset. The misclassified images are significantly different from the rest of images in their class and therefore cannot be attributed to weakness in the classification system.

Keywords

Renal cell carcinoma Subtype classification Computer-aided diagnosis Tissue image quantification Feature extraction for classification Wavelet Co-occurrence Morphological processing 

References

  1. 1.
    Esgiar, A. N., Naguib, R. N. G., Sharif, B. S., Bennett, M. K., & Murray, A. (1998). Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa. IEEE Transactions on Information Technology Biomedicine, 2, 197–203.CrossRefGoogle Scholar
  2. 2.
    Vermeulena, P. B., Gasparinib, G., Foxc, S. B., Toid, M., Martine, L., Mcculloche, P., Pezzellaf, F., Vialeg, G., Weidnerh, N., Harrisc, A. L., & Dirix, L. Y. (1996). Quantification of angiogenesis in solid human tumors: an international consensus on the methodology and criteria of evaluation. European Journal of Cancer, 32(14), 2474–2484.Google Scholar
  3. 3.
    Roula, M. A., Diamond, J., Bouridane, A., Miller, P., & Amira, A. (2002). A multispectral computer vision system for automatic grading of prostatic neoplasia. Proc. IEEE Int. Symp. On Biomed. Imaging, 193–196.Google Scholar
  4. 4.
    Thiran, J. P., & Macq, B. (1996). Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Transactions on Biomedical Engineering, 43(10), 1011–1020.CrossRefGoogle Scholar
  5. 5.
    Diamond, J., Anderson, N., Bartels, P., Montironi, R., & Hamilton, P. (2004). The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Human Pathology, 35, 1121–1131.CrossRefGoogle Scholar
  6. 6.
    Walker, R. F., Jackway, P. T., Lovell, B., & Longstaff, I. D. (1994). Classification of cervical cell nuclei using morphological segmentation and textural feature extraction. Proc of the 2nd Australian and New Zealand Conference on Intelligent Information Systems, 297–301.Google Scholar
  7. 7.
    Esgiar, A. N., Naguib, R. N. G., Sharif, B. S., Bennett, M. K., & Murray, A. (2002). Fractal analysis in the detection of colonic cancer images. IEEE Transactions on Information Technology Biomedicine, 6, 54–58.CrossRefGoogle Scholar
  8. 8.
    Depeursinge, A., Sage, D., Hidki, A., Platon, A., Poletti, P.-A., Unser, M., & Muller, H. (2007). Lung Tissue Classification Using Wavelet Frames”, 29th Annual International,Conference of the IEEE EMBS, 6259–6262.Google Scholar
  9. 9.
    Waheed, S., Moffitt, R. A., Chaudry, Q., Young, A. N., & Wang, M. D. (2007). Computer Aided Histopathological Classification of Cancer Subtypes. IEEE BIBE 2007, 503–508.Google Scholar
  10. 10.
    Weeks, A. R., & Hague, G. E. (1997). Color Segmentation in the HSI Color Space Using the k-means Algorithm. Proceedings of the SPIENonlinear Image Processing, 8, 143–154.Google Scholar
  11. 11.
    Hauta-Kasari, M., Parkkinen, J., & Jaaskelainen, T. (1996). Generalized co-occurrence matrix for multispectral texture analysis. 13th International Conference on Pattern Recognition, 2, 785–789.Google Scholar
  12. 12.
    Arivazhagan, S., & Ganesan, L. (2003). Texture classification using wavelet transform. Pattern Recogn Lett, 24(9–10), 1513–1521.MATHCrossRefGoogle Scholar
  13. 13.
    Unser, M., & Aldroubi, A. (1996). A review of wavelets in biomedical applications. Proceedings of the IEEE, 84(4), 626–638.CrossRefGoogle Scholar
  14. 14.
    Fernandez, M., & Mavilio, A. (2002). Texture analysis of medical images using the wavelet transform. AIP Conference Proceedings, 630, 164–168 October.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Qaiser Chaudry
    • 1
  • Syed Hussain Raza
    • 1
  • Andrew N. Young
    • 3
  • May D. Wang
    • 1
    • 2
  1. 1.Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Biomedical Engineering, Winship Cancer InstituteGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  3. 3.Pathology and Laboratory MedicineEmory UniversityAtlantaUSA

Personalised recommendations