Advertisement

Journal of Signal Processing Systems

, Volume 55, Issue 1–3, pp 251–265 | Cite as

Wavelet-based Interpolation Scheme for Resolution Enhancement of Medical Images

  • Wen-Li LeeEmail author
  • Chun-Cheng Yang
  • Hsien-Tsai Wu
  • Mei-Juan Chen
Article

Abstract

A novel interpolation method for resolution enhancement is proposed in this paper. This method estimates wavelet coefficients in the high frequency subbands from a low resolution image using our proposed filters. An inverse wavelet transform is then performed for synthesis of a higher resolution image. Experimental results show that our proposed method outperforms other commonly used schemes objectively and subjectively. In addition, the processing time required in an algorithm-implemented Digital Signal Processor (DSP) is satisfied. By using the DSP hardware platform, off-line interpolation processing becomes easier and more feasible. The interpolated image has merits of high contrast and remarkable sharpness which essentially meet the requirements for interpolation of medical images. Our method can provide better quality of interpolated medical images compared to other methods to assist physicians in making diagnoses.

Keywords

Resolution enhancement Interpolation Discrete wavelet transform DSP Medical image 

Notes

Acknowledgement

We appreciate the assistance and support of the radiologists from department of radiology, Tzu Chi general hospital, Hualien, Taiwan.

References

  1. 1.
    Pratt, W. K. (1978). Digital image processing. Toronto: Wiley.Google Scholar
  2. 2.
    Keys, R. G. (1981). Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, Signal Processing, 29(6), 1153–1160.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Temizel, A., & Vlachos, T. (2005). Wavelet domain image resolution enhancement using cycle-spinning. Electronics Letters, 31(3), 119–121.CrossRefGoogle Scholar
  4. 4.
    Chang, S. G., Cvetkovic, Z., & Vetterli, M. (1995). Resolution enhancement of image using wavelet transform extrema extrapolation. Proceedings of International Conference on Acoustics, Speech, and Signal Processing, 4, 2379–2382.Google Scholar
  5. 5.
    Carey, K., Chuang, D. B., & Hemami, S. S. (1999). Regularity-preserving image interpolation. IEEE Transactions on Image Processing, 8(9), 1295–1297.CrossRefGoogle Scholar
  6. 6.
    Muresan, D. D., & Parks, T. W. (2000). Prediction of image detail. IEEE International Conference on Image Processing, 2, 323–326.Google Scholar
  7. 7.
    Charnigo, R., Sun, J., & Muzic, R. (2006). A semi-local paradigm for wavelet denoising. IEEE Transactions on Image Processing, 15(3), 666–677.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Shih, Y. Y., Chen, J. C., & Liu, R. S. (2005). Development of wavelet de-noising technique for PET images. Computerized Medical Imaging and Graphics, 29, 297–304.CrossRefGoogle Scholar
  9. 9.
    Eom, I. K., & Kim, Y. S. (2004). Wavelet-based denoising with nearly arbitrarily shaped window. IEEE Signal Processing Letters, 11(12), 937–940.CrossRefGoogle Scholar
  10. 10.
    Huang, K., & Aviyente, S. (2006). Information-theoretic wavelet packet subband selection for texture classification. Signal Processing, 86, 1410–1420.CrossRefGoogle Scholar
  11. 11.
    Fahmy, G., Black Jr., J., & Panhanathan, S. (2006). Texture characterization for joint compression and classification based on human perception in the wavelet domain. IEEE Transactions on Medical Imaging, 15(6), 1389–1396.Google Scholar
  12. 12.
    Dippel, S., Stahl, M., Wiemker, R., & Blafert, T. (2002). Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform. IEEE Transactions on Medical Imaging, 21(4), 343–353.CrossRefGoogle Scholar
  13. 13.
    Sweldens, W. (1996). The lifting scheme: a custom-design construction of biorthogonal wavelets. Applied Computing and Harmonic Analysis, 3(15), 186–200.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.CrossRefGoogle Scholar
  15. 15.
    Bovik, A. (ed.) (2000). Hand book of image and video processing. Academic.Google Scholar
  16. 16.
    Prasad, M. N., Sowmya, A., & Hock, I. (2004). Feature subset selection using ICA for classifying emphysema in HRCT images. Proceeding of International Conference on Pattern Recognition, 4, 515–518.Google Scholar
  17. 17.
    Prasad, M. N., & Sowmya, A. (2004). Detection of bronchovascular pairs on HRCT lung images through relational learning. International Symposium on Biomedical Imaging, 2, 1135–1138.Google Scholar
  18. 18.
    Walsh, C., Dowling, A., Meade, A., & Malone, J. (2005). Subjective and objective measures of image quality in digital fluoroscopy. Radiation Protection Dosimetry, 117, 34–37.CrossRefGoogle Scholar
  19. 19.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wen-Li Lee
    • 1
    • 2
    Email author
  • Chun-Cheng Yang
    • 1
  • Hsien-Tsai Wu
    • 1
  • Mei-Juan Chen
    • 1
  1. 1.Department of Electrical EngineeringNational Dong-Hwa UniversityHualienTaiwan
  2. 2.Department of Radiological TechnologyTzu Chi College of TechnologyHualienTaiwan

Personalised recommendations