Automated Protein Distribution Detection in High-Throughput Image-Based siRNA Library Screens

  • Yan Nei Law
  • Stephen Ogg
  • John Common
  • David Tan
  • E. Birgitte Lane
  • Andy M. Yip
  • Hwee Kuan Lee


The availability of RNA interference (RNAi) libraries, automated microscopy and computational methods enables millions of biochemical assays to be carried out simultaneously. This allows systematic, data driven high-throughput experiments to generate biological hypotheses that can then be verified with other techniques. Such high-throughput screening holds great potential for new discoveries and is especially useful in drug screening. In this study, we present a computational framework for an automatic detection of changes in images of in vitro cultured keratinocytes when phosphatase genes are silenced using RNAi technology. In these high-throughput assays, the change in pattern only happens in 1–2% of the cells and fewer than one in ten genes that are silenced cause phenotypic changes in the keratin intermediate filament network, with small keratin aggregates appearing in cells in addition to the normal reticular network seen in untreated cells. By taking advantage of incorporating prior biological knowledge about phenotypic changes into our algorithm, it can successfully filter out positive ‘hits’ in this assay which is shown in our experiments. We have taken a stepwise approach to the problem, combining different analyses, each of which is well-designed to solve a portion of the problem. These include, aggregate enhancement, edge detection, circular object detection, aggregate clustering, prior to final classification. This strategy has been instrumental in our ability to successfully detect cells containing protein aggregates.


Keratin proteins RNA interference Mutant detection Fluorescence microscopy Image analysis 



This work was supported (in part) by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.


  1. 1.
    Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610–621.CrossRefGoogle Scholar
  2. 2.
    Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed., p. 680). New York: Wiley-Interscience.Google Scholar
  3. 3.
    Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., & Krepler, R. (1982). The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell, 31, 11–24.CrossRefGoogle Scholar
  4. 4.
    Fuchs, E., & Weber, K. (1994). Intermediate filaments: Structure, dynamics, function, and disease. Annual Reviews of Biochemical, 63, 345–382.Google Scholar
  5. 5.
    Irvine, A. D., & McLean, W. H. (1999). Human keratin diseases: The increasing spectrum of disease and subtlety of the phenotype-genotype correlation. British Journal of Dermatology, 140, 815–828.CrossRefGoogle Scholar
  6. 6.
    Szeverenyi, I., Cassidy, A. J., Chung, C. W., Lee, B. T., Common, J. E., Ogg, S. C., et al. (2007). The human intermediate filament database: Comprehensive information on a gene family involved in many human diseases. Human Mutation, 29, 351–360.CrossRefGoogle Scholar
  7. 7.
    Ku, N. O., Liao, J., Chou, C. F., & Omary, M. B. (1996). Implications of intermediate filament protein phosphorylation. Cancer Metastasis Reviews, 15, 429–444.CrossRefGoogle Scholar
  8. 8.
    Herrmann, H., Hesse, M., Reichenzeller, M., Aebi, U., & Magin, T. M. (2003). Functional complexity of intermediate filament cytoskeletons: From structure to assembly to gene ablation. International Review of Cytology, 223, 83–175.CrossRefGoogle Scholar
  9. 9.
    Coulombe, P. A., & Omary, M. B. (2002). ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Current Opinion in Cell Biology, 14, 110–122.CrossRefGoogle Scholar
  10. 10.
    Coulombe, P. A., Hutton, M. E., Letai, A., Hebert, A., Paller, A. S., & Fuchs, E. (1991). Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: Genetic and functional analyses. Cell, 66, 301–311.CrossRefGoogle Scholar
  11. 11.
    Toivola, D. M., Zhou, Q., English, L. S., & Omary, M. B. (2002). Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Molecular Biology of the Cell, 13, 1857–1870.CrossRefGoogle Scholar
  12. 12.
    Windoffer, R., & Leube, R. E. (2004). Imaging of keratin dynamics during the cell cycle and in response to phosphatase inhibition. Methods in Cell Biology, 78, 321–352.CrossRefGoogle Scholar
  13. 13.
    Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R., et al. (2006). High-throughput RNAi screening by time-lapse imaging of live human cells. Nature Methods, 3(5), 385–390.CrossRefGoogle Scholar
  14. 14.
    Yarrow, J. C., Perlman, Z. E., Kirchhausen, T., & Mitchison, T. J. (2003). Phenotypic screening of small molecule libraries by high throughput cell imaging. Combinatorial Chemistry & High Throughput Screening, 6(4), 279–286.Google Scholar
  15. 15.
    Kneller, A. (2006). The new age of bioimaging. Paradigm, Fall, pp. 18–25.Google Scholar
  16. 16.
    Chen, X., Velliste, M., & Murphy, R. F. (2006). Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics. Cytometry A, 69A(7), 631–640.CrossRefGoogle Scholar
  17. 17.
    Conrad, C., Erfle, H., Warnat, P., Daigle, N., Lörch, T., Ellenberg, J., et al. (2004). Automatic identification of subcellular phenotypes on human cell arrays. Genome Research, 14, 1130–1136.CrossRefGoogle Scholar
  18. 18.
    Chen, X., & Murphy, R. F. (2005). Objective clustering of proteins based on subcellular location patterns. Journal of Biomedicine and Biotechnology, 2005(2), 87–95.MATHCrossRefGoogle Scholar
  19. 19.
    Bakal, C., Aach, J., Church, G., & Perrimon, N. (2007). Quantitative morphological signatures define local signaling networks regulating cell morphology. Science, 316, 1753–1756.CrossRefGoogle Scholar
  20. 20.
    Jones, T. R., Carpenter, A. E., Sabatini, D. M., & Golland, P. (2006). Methods for high-content, high-throughput image-based cell screening. Proceedings of the Workshop on Microscopic Image Analysis with Applications in Biology, pp. 65–72.Google Scholar
  21. 21.
    Glory, E., & Murphy, R. F. (2007). Automated subcellular location determination and high-throughput microscopy. Developmental Cell, 12, 7–16.CrossRefGoogle Scholar
  22. 22.
    Burrus, C. S., & Copinath, R. A. (1997). Introduction to wavelets and wavelet transforms (p. 268). NJ: Prentice Hall.Google Scholar
  23. 23.
    Starck, J. L., Murtagh, F., & Bijaoui, A. (1995). Multiresolution support applied to image filtering and restoration. Graphical Models and Image Processing, 57(5), 420–431.CrossRefGoogle Scholar
  24. 24.
    Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679–714.CrossRefGoogle Scholar
  25. 25.
    Jain, A. K. (1988). Fundamentals of digital image processing (p. 592). NJ: Prentice Hall.Google Scholar
  26. 26.
    Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231.Google Scholar
  27. 27.
    Bright, X., & Steel, E. B. (1987). Two-dimensional top hat filter for extracting spots and spheres from digital images. Journal of Microscopy, 146(2), 191–200.Google Scholar
  28. 28.
    Breen, X., Joss, G. H., & Williams, K. L. (1991). Locating objects of interest within biological objects: the top hat box filter. Journal of Computer-Assisted Microscopy, 3(2), 97–102.Google Scholar
  29. 29.
    Olivo-Marin, J. C. (2002). Extraction of spots in biological images using multiscale products. Pattern Recognition, 35, 1989–1996.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yan Nei Law
    • 1
  • Stephen Ogg
    • 2
  • John Common
    • 2
  • David Tan
    • 2
  • E. Birgitte Lane
    • 2
  • Andy M. Yip
    • 3
  • Hwee Kuan Lee
    • 1
  1. 1.Imaging Informatics Group, Bioinformatics InstituteA*STARSingaporeSingapore
  2. 2.Institute of Medical BiologyA*STARSingaporeSingapore
  3. 3.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations