Journal of Signal Processing Systems

, Volume 54, Issue 1–3, pp 205–214 | Cite as

Image Segmentation Using Excess Entropy

  • A. BarderaEmail author
  • I. Boada
  • M. Feixas
  • M. Sbert


We present a novel information-theoretic approach for thresholding-based segmentation that uses the excess entropy to measure the structural information of a 2D or 3D image and to locate the optimal thresholds. This approach is based on the conjecture that the optimal thresholding corresponds to the segmentation with maximum structure, i.e., maximum excess entropy. The contributions of this paper are several fold. First, we introduce the excess entropy as a measure of the spatial structure of an image. Second, we present an adaptive thresholding method based on the maximization of excess entropy. Third, we propose the use of uniformly distributed random lines to overcome the main drawbacks of the excess entropy computation. To show the good performance of the proposed segmentation approach different experiments on synthetic and real brain models are carried out.


Image segmentation Feature extraction Image structure Thresholding Information theory Excess entropy Neuroimage segmentation 



Our project is funded in part by Spanish Government grants number TIN2007-68066-C04-01 and TIN2007-67982-C02.


  1. 1.
    ITK (2008). ITK Insight Toolkit.
  2. 2.
    VTK (2008). VTK Visualization Toolkit.
  3. 3.
    Bardera, A., Feixas, M., Boada, I., & Sbert, M. (2005). Medical image registration based on random line sampling. In IEEE International conference on image processing (ICIP’05). Genova, Italy (September).Google Scholar
  4. 4.
    Brink, A. (1995). Minimum spatial entropy threshold selection. IEE Proceeding-Vision, Image, and Signal Processing, 142(3), 128–132 (June).CrossRefGoogle Scholar
  5. 5.
    Castro, F., & Sbert, M. (1998). Application of quasi-monte carlo sampling to the multipath method for radiosity. In Proceedings of 3rd International conference on Monte Carlo and Quasi-Monte Carlo methods in scientific computing, Claremont (CA), USA (June).Google Scholar
  6. 6.
    Cocosco, C., Kollokian, V., Kwan, R.-S., & Evans, A. (1997). Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage, 5(4), S424.Google Scholar
  7. 7.
    Cover, T. M., & Thomas, J. (1991). Elements of information theory. New York: Wiley.zbMATHGoogle Scholar
  8. 8.
    Crutchfield, J. P., & Feldman, D. P. (2003). Regularities unseen, randomness observed: The entropy convergence hierarchy. Chaos, 15, 25–54.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Crutchfield, J. P., & Packard, N. (1983). Symbolic dynamics of noisy chaos. Physica D, 7, 201–223.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Duda, R. O., Hart, P. E., & Stork, D.G. (2001). Pattern classification, 2nd edn. New York: Wiley.zbMATHGoogle Scholar
  11. 11.
    Feldman, D., & Crutchfield, J. (2003). Structural information in two-dimensional patterns: Entropy convergence and excess entropy. Physical Review E, 67, 051103.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Feldman, D. P. (2002). A brief introduction to: Information theory, excess entropy and computational mechanics. Technical report, Department of Physics, University of California, Berkeley (CA), USA (October).Google Scholar
  13. 13.
    Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. Upper Saddle River: Prentice Hall.Google Scholar
  14. 14.
    Kapur, J., Sahoo, P., & Wong, A. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics and Image Processing, 29(3), 273–285 (March).CrossRefGoogle Scholar
  15. 15.
    Pun, T. (1980). A new method for gray-level picture thresholding using the entropy of the histogram. Signal Processing, 2, 223–237.CrossRefGoogle Scholar
  16. 16.
    Rigau, J., Feixas, M., Sbert, M., Bardera, A., & Boada, I. (2004). Medical image segmentation based on mutual information maximization. In Lecture Notes in computer science (MICCAI 2004) (pp. 135–142). Rennes-Saint Malo, France (September).Google Scholar
  17. 17.
    Santaló, L. A. (1976). Integral geometry and geometric probability. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  18. 18.
    Sbert, M. (1993). An integral geometry based method for fast form-factor computation. Computer Graphics Forum (Proceedings of Eurographics’93), 12(3), 409–420.CrossRefGoogle Scholar
  19. 19.
    Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146–168 (January).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Graphics and Imaging LaboratoryUniversity of GironaGironaSpain

Personalised recommendations