Journal of Signal Processing Systems

, Volume 54, Issue 1–3, pp 45–63

Adaptive Grid Generation Based Non-rigid Image Registration using Mutual Information for Breast MRI

  • Mei-Yi Chu
  • Hua-Mei Chen
  • Chih-Yao Hsieh
  • Ting-Hung Lin
  • Hsi-Yue Hsiao
  • Guojun Liao
  • Qi Peng
Article

Abstract

In this paper a new approach for non-rigid image registration using mutual information is introduced. A fast parametric method for non-rigid registration is developed by adjusting divergence and curl of an intermediate vector field from which the deformation field is computed using finite-central difference method. Mutual information is newly employed as the similarity measure in the gradient-based cost minimization (or mutual information maximization) of the existing registration framework. The huge amount of data associated with MRI is handled by a fully automated multi-resolution scheme. The adaptive grid system naturally distributes more grids to deprived areas. The positive monitor function disallows grid folding and provides a mean to control the ratio of the areas between the original and transformed domain. The flexibility of the adaptive grid allocation could dramatically reduce processing time with quality preserved. Mutual information facilitates robust registration between different image modalities. Different types of joint histogram estimation are compared and integrated with the system. This scheme is applied on dynamic contrast-enhanced breast MRI, which requires the registration algorithm to be non-rigid, contrast-enhanced features preserving. Preliminary experiments show promising results and great potential for future extension.

Keywords

Multi-resolution Breast MRI Non-rigid registration Mutual information Gradient of Mutual Information 

References

  1. 1.
    Armitage, P., Behrenbruch, C., Brady, M., & Moore, N. (2005). Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast. Medical Image Analysis, 9, 315–329.CrossRefGoogle Scholar
  2. 2.
    Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18(8), 712–721.CrossRefGoogle Scholar
  3. 3.
    Thévenaz, P., & Unser, M. (2000). Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 9, 2083–2099.MATHCrossRefGoogle Scholar
  4. 4.
    Rohlfing, T., Maurer Jr., C. R., Bluemke, D. A., & Jacobs, M. A. (2003). Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Transactions on Medical Imaging, 22(6), 730–741.CrossRefGoogle Scholar
  5. 5.
    Sdika, M. (2008). A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization. IEEE Transactions on Medical Imaging, 27, 271–281.CrossRefGoogle Scholar
  6. 6.
    Crum, W. R., Tanner, C., & Hawkes, D. J. (2005). Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging. Physics in Medicine & Biology, 50, 5153–5174.CrossRefGoogle Scholar
  7. 7.
    Cai, X. X., Fleitas, D., Jiang, B., & Liao, G. (2004). Adaptive grid generation based on the least-squares finite-element method. Computers and Mathematics with Applications, 48, 1077–1085.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, H., Hsieh, C. Y., Liao, G. (2007) Non-rigid image registration using adaptive grid generation: preliminary results. In 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 580–583).Google Scholar
  9. 9.
    Hsiao, H. Y., Chen, H., Lin, T. H., Hsieh, C. Y., Chu, M. Y., & Liao, G. (2008) A new parametric nonrigid image registration work based on Helmholtz’s theorem. Proc. SPIE Vol. 6914, 69142W (Mar. 11, 2008).Google Scholar
  10. 10.
    Hsieh, C. Y., Chen, H., Lin, T. H., Hsiao, H. Y., Chu, M. Y., & Liao, G. (2008) On the development of a new nonrigid image registration using deformation-based grid generation. Proc. SPIE Vol. 6914, 69140W (Mar. 11, 2008).Google Scholar
  11. 11.
    Crum, W. R., Hartkens, T., & Hill, D. L. G. (2004). Non-rigid image registration: Theory and practice. British Journal of Radiology, 140–153.Google Scholar
  12. 12.
    Roose, L., Mollemans, W., Loeckx, D., Maes, F., & Suetens, P. (2006) Biomechanically based elastic breast registration using mass tensor simulation. In MICCAI (pp. 718–725).Google Scholar
  13. 13.
    Yoo, T. S. (2004). Insight into Images: principles and practice for segmentation, registration, and image analysis. Wellesley, MA: A K Peters.Google Scholar
  14. 14.
    Varshney, P. K., & Arora, M. K. (2004). Advanced image processing techniques for remotely sensed hyperspectral data, Springer, Chap. 3.Google Scholar
  15. 15.
    Maes, F., Collingon, A., Vdermeulen, D., Marchal, G., & Suetens, P. (1997). Multimodality image registration by maximization of mutual information. IEEE Transactions On Medical Imaging, 16, 187–198.CrossRefGoogle Scholar
  16. 16.
    Unser, M., Aldroubi, A., & Eden, M. (1993). B-spline signal prcoessing: Part I—Theory. IEEE Transactions on Signal Processing, 41(2), 821–833.MATHCrossRefGoogle Scholar
  17. 17.
    Unser, M., Aldroubi, A., & Eden, M. (1993). B-spline signal prcoessing: Part II—Efficient design and applications. IEEE Transactions on Signal Processing, 41(2), 834–848.MATHCrossRefGoogle Scholar
  18. 18.
    Dowson, N., & Bowden, R. (2006). A unifying framework for mutual information methods for use in non-linear optimisation. In ECCV (pp. 365–378).Google Scholar
  19. 19.
    Xu, X., & Dony, R. D. (2006). Fast fluid registration using inverse filtering for non-rigid image registration. In ISBI (pp. 470–473).Google Scholar
  20. 20.
    Froh, M. S., Barker, D. C., Brock, K. K., Plewes, D. B., Martel, A. L. (2006). Piecewise-quadrilateral registration by optical flow—Applications in contrast-enhanced MR imaging of the breast. In MICCAI (pp. 686–693).Google Scholar
  21. 21.
    Kybic, J., & Unser, M. (2003). Fast parametric elastic image registration. IEEE Transactions on Image Processing, 12(11), 1427–1442.CrossRefGoogle Scholar
  22. 22.
    Tanner, C., Schnabel, J. A., Hill, D. L. G., Hawkes, D. J., Degenhard, A., Leach, M. O., et al. (2007). Quantitative evaluation of free-form deformation registration for dynamic contrast-enhanced MR mammography. Medical Physics, 34, 1221–1233.CrossRefGoogle Scholar
  23. 23.
    Kuhl, C. K., & Schild, H. H. (2000). Dynamic image interpretation of MRI of the breast. Journal of Magnetic Resonance Imaging, 12, 965–974.CrossRefGoogle Scholar
  24. 24.
    Suter, D. (1994). Motion estimation and vector splines. IEEE Proceedings CVPR ‘94 (pp. 939–942).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mei-Yi Chu
    • 1
  • Hua-Mei Chen
    • 1
  • Chih-Yao Hsieh
    • 1
  • Ting-Hung Lin
    • 1
  • Hsi-Yue Hsiao
    • 1
  • Guojun Liao
    • 2
  • Qi Peng
    • 3
  1. 1.Department of Computer Science and EngineeringThe University of Texas at ArlingtonArlingtonUSA
  2. 2.Department of MathematicsThe University of Texas at ArlingtonArlingtonUSA
  3. 3.Department of RadiologyThe University of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations