Journal of Signal Processing Systems

, Volume 55, Issue 1–3, pp 35–47 | Cite as

Intravascular Ultrasound Tissue Characterization with Sub-class Error-Correcting Output Codes

  • Sergio Escalera
  • Oriol Pujol
  • Josepa Mauri
  • Petia Radeva


Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on radial frequency, texture-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this sense, error-correcting output codes (ECOC) show to robustly combine binary classifiers to solve multi-class problems. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different sub-sets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers. Furthermore, the combination of RF and texture-based features also shows improvements over the state-of-the-art approaches.


Intravascular ultrasound Multi-class classification Embedding of dichotomies Sub-classes Error-correcting output codes 



This work has been supported in part by TIN2006-15308-C02 and FIS ref. PI061290.


  1. 1.
    World Health Organization (2006). World Health Organization Statistics.
  2. 2.
    Burke, A. P., Farb, A., Malcom, G. T., Smialek, J., & Virmani, R. (1997). Coronary risk factors and plaque morphology inmen with coronary disease who died suddently. The New England Journal of Medicine, 336(18), 1276–1281.CrossRefGoogle Scholar
  3. 3.
    Dietterich, T., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263–282.zbMATHGoogle Scholar
  4. 4.
    Windeatt, T., & Ardeshir, G. (2003). Boosted ECOC ensembles for face recognition. International Conference on Visual Information Engineering, 165–168.Google Scholar
  5. 5.
    Kittler, J., Ghaderi, R., Windeatt, T., & Matas, J. (2001). Face verification using error correcting output codes. CVPR, 1, 755–760.Google Scholar
  6. 6.
    Ghani, R. (2001). Combining labeled and unlabeled data for text classification with a large number of categories. International Conference on Data Mining, 597–598.Google Scholar
  7. 7.
    Zhou, J., & Suen, C., (2005). Unconstrained numeral pair recognition using enhanced error correcting output coding: A holistic approach. Proceedings in Conference on Document Analysis and Records, 1, 484–488.Google Scholar
  8. 8.
    Allwein, E., Schapire, R., & Singer, Y. (2002). Reducing multiclass to binary: A unifying approach for margin classifiers. JMLR, 1, 113–141.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Windeatt, T., & Ghaderi, R. (2003). Coding and decoding for multiclass learning problems. Information Fusion, 1, 11–21.CrossRefGoogle Scholar
  10. 10.
    Pujol, O., Radeva, P., & Vitrià, J. (2006). Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. PAMI, 28, 1001–1007.Google Scholar
  11. 11.
    Pudil, P., Ferri, F., Novovicova, J., & Kittler, J. (1994). Floating search methods for feature selection with nonmonotonic criterion functions. ICPR, 279–283.Google Scholar
  12. 12.
    Escalera, S., Pujol, O., & Radeva, P. (2008). Loss-weighted decoding for error-correcting output coding. International Conference on Computer Vision Theory and Applications, 2, 117–122.Google Scholar
  13. 13.
    Karla, C., Joel, B., Oriol, P., Salvatella, N., & Radeva, P. (2006). In-vivo IVUS tissue classification: A comparison between RF signal analysis and reconstructed images. Progress in Pattern Recognition (pp. 137–146). Berlin: SpringerGoogle Scholar
  14. 14.
    Hastie, T., & Tibshirani, R. (1998). Classification by pairwise grouping. NIPS, 26, 451–471.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Nilsson, N. J. ( 1965). Learning machines, McGraw-Hill.Google Scholar
  16. 16.
    Allwein, E., Schapire, R., & Singer, Y. (2002). Reducing multiclass to binary: A unifying approach for margin classifiers. JMLR, 1, 113–141.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting. The annals of statistics, 38, 337–374.MathSciNetGoogle Scholar
  18. 18.
    Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.MathSciNetGoogle Scholar
  19. 19.
    Pujol, O., Rosales, M., & Radeva, P. (2003). Intravascular ultrasound images vessel characterization using adaBoost. Functional Imaging and Modelling of the Heart: Lecture Notes in Computer Science, 242–251.Google Scholar
  20. 20.
    Zhang, X., McKay, C. R., & Sonka, M. (1998). Tissue characterization in intravascular ultrasound images. IEEE Transactions on Medicine, 17(A), 889–898.CrossRefGoogle Scholar
  21. 21.
    de Korte, C. L., PasterKamp, G., van der Steen, A. F. W., & Woutman, H. A. (1999). Characterisation of plaque components with IVUS elastography. IEEE Ultrasonics Symposium Proceedings, 1645-1648.Google Scholar
  22. 22.
    Nair, A., Kuban, B. D., Obuchowski, N., & Vince, G. (2001). Assesing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. Ultrasound in Medicine & Biology, 27, 1319–1331.CrossRefGoogle Scholar
  23. 23.
    Kawasaki, M. (2002). In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation, 105, 2487–2492.CrossRefGoogle Scholar
  24. 24.
    Murashige, A., Hiro , T., Fujii, T., Imoto, K., Murata, T., Fukumoto, Y., et al. (2005). Detection of lipid-laden athero sclerotic plaque by wavelet analysis of radiofrequency intravascular ultrasound signals. Journal of the American College of Cardiology, 45(12), 1954–1960.CrossRefGoogle Scholar
  25. 25.
    Proakis, J., Rader, C., Ling, F., & Nikias, C. (1992). Advanced digital signal processing. Mc Millan.Google Scholar
  26. 26.
    Ohanian, P., Dubes, R. (1992). Performance evaluation for four classes of textural features. Pattern Recognition, 25, 819–833.CrossRefGoogle Scholar
  27. 27.
    Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971–987.CrossRefGoogle Scholar
  28. 28.
    Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America, 2(A),1160–1169.Google Scholar
  29. 29.
    Bovik, A. C., Clark, M., & Geisler, W. S. (1990). Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1), 55–73.CrossRefGoogle Scholar
  30. 30.
    Gil, D., Hernandez, A., Rodríguez, O., Mauri, F., & Radeva, P. (2006). Statistical strategy for anisotropic adventitia modelling in IVUS. IEEE Transaction Medical Imaging, 27, 1022–1030.Google Scholar
  31. 31.
    Randen, T., & Husoy, J. H. (1999). Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, 291–310.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sergio Escalera
    • 1
    • 2
  • Oriol Pujol
    • 1
    • 2
  • Josepa Mauri
    • 3
  • Petia Radeva
    • 1
    • 2
  1. 1.Centre de Visió per ComputadorBellaterra BarcelonaSpain
  2. 2.Department Matemàtica Aplicada i AnàlisiBarcelonaSpain
  3. 3.Hospital Universityari Germans Trias i PujolBadalonaSpain

Personalised recommendations