Advertisement

A Review of Audio Fingerprinting

  • Pedro Cano
  • Eloi Batlle
  • Ton Kalker
  • Jaap Haitsma
Article

Abstract

An audio fingerprint is a compact content-based signature that summarizes an audio recording. Audio Fingerprinting technologies have attracted attention since they allow the identification of audio independently of its format and without the need of meta-data or watermark embedding. Other uses of fingerprinting include: integrity verification, watermark support and content-based audio retrieval. The different approaches to fingerprinting have been described with different rationales and terminology: Pattern matching, Multimedia (Music) Information Retrieval or Cryptography (Robust Hashing). In this paper, we review different techniques describing its functional blocks as parts of a common, unified framework.

Keywords

audio fingerprinting content-based audio identification watermarking integrity verification audio information retrieval robust hashing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, Addison Wesley, 1999.Google Scholar
  2. 2.
    S. Subramanya, R. Simha, B. Narahari, and A. Youssef, “Transform-Based Indexing of Audio Data for Multimedia Databases,” in Proc. of Int. Conf. on Computational Intelligence and Multimedia Applications, New Delhi, India, Sept. 1999.Google Scholar
  3. 3.
    A. Kimura, K. Kashino, T. Kurozumi, and H. Murase, “Very Quick Audio Searching: Introducing Global Pruning to the Time-Series Active Search,” in Proc. of Int. Conf. on Computational Intelligence and Multimedia Applications, Salt Lake City, Utah, May 2001.Google Scholar
  4. 4.
    J. Haitsma and T. Kalker, “A Highly Robust Audio Fingerprinting System,” in Proceedings of the International Symposium on Music Information Retrieval, Paris, France, 2002.Google Scholar
  5. 5.
    M. Mihçak and R. Venkatesan, “A Perceptual Audio Hashing Algorithm: A Tool for Robust Audio Identification and Information Hiding,” in 4th Int. Information Hiding Workshop, Pittsburg, PA, April 2001.Google Scholar
  6. 6.
    P. Cano, E. Batlle, H. Mayer, and H. Neuschmied, “Robust Sound Modeling for Song Detection in Broadcast Audio,” in Proc. AES 112th Int. Conv., Munich, Germany, May 2002.Google Scholar
  7. 7.
    E. Allamanche, J. Herre, O. Helmuth, B. Fröba, T. Kasten, and M. Cremer, “Content-Based Identification of Audio Material Using Mpeg-7 Low Level Description,” in Proc. of the Int. Symp. of Music Information Retrieval, Indiana, USA, Oct. 2001.Google Scholar
  8. 8.
    S. Sukittanon and L. Atlas, “Modulation Frequency Features for Audio Fingerprinting,” in Proc. of the ICASSP, May 2002.Google Scholar
  9. 9.
    S. Theodoris and K. Koutroumbas, Pattern Recognition, Academic Press, 1999.Google Scholar
  10. 10.
    J. Picone, “Signal Modeling Techniques in Speech Recognition,” Proc. of the ICASSP, vol. 81, no. 9, 1993, pp. 1215–1247.Google Scholar
  11. 11.
    Request for information on audio fingerprinting technologies (2001) [Online]. Available:[ http://www.riaa.org/pdf/RIAA_IFPI_Fingerprinting_RFI.pdf
  12. 12.
    L. Boney, A. Tewfik, and K. Hamdy, “Digital Watermarks for Audio Signals,” in IEEE Proceedings Multimedia, 1996, pp. 473–480.Google Scholar
  13. 13.
    S. Craver, W.M., and B. Liu, “What Can We Reasonably Expect from Watermarks?” in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, Oct. 2001.Google Scholar
  14. 14.
    Audio identification technology overview. (2002) [Online]. Available: [http://www.audiblemagic.com/about]
  15. 15.
    T. Kalker, “Applications and Challenges for Audio Fingerprinting,” in Presentation at the 111th AES Convention, New York, 2001.Google Scholar
  16. 16.
    E. Gómez, P. Cano, L. de C.T. Gomes, E. Batlle, and M. Bonnet, “Mixed Watermarking-Fingerprinting Approach for Integrity Verification of Audio Recordings,” in Proceedings of the International Telecommunications Symposium, Natal, Brazil, Sept. 2002.Google Scholar
  17. 17.
    P. Cano, M. Kaltenbrunner, F. Gouyon, and E. Batlle, “On the Use of Fastmap for Audio Information Retrieval,” in Proceedings of the International Symposium on Music Information Retrieval, Paris, France, 2002.Google Scholar
  18. 18.
    J. Lourens, “Detection and Logging Advertisements Using its Sound,” in Proc. of the COMSIG, Johannesburg, 1990.Google Scholar
  19. 19.
    F. Kurth, A. Ribbrock, and M. Clausen, “Identification of Highly Distorted Audio Material for Querying Large Scale Databases,” in Proc. AES 112th Int. Conv., Munich, Germany, May 2002.Google Scholar
  20. 20.
    G. Richly, L. Varga, F. Kovàs, and G. Hosszú, “Short-Term Sound Stream Characterisation for Reliable, Real-Time Occurrence Monitoring of Given Sound-Prints,” in Proc. 10th Mediterranean Electrotechnical Conference, MEleCon, 2000.Google Scholar
  21. 21.
    C. Burges, J. Platt, and S. Jana, “Extracting Noise-Robust Features from Audio Data,” in Proc. of the ICASSP, Florida, USA, May 2002.Google Scholar
  22. 22.
    T. Blum, D. Keislar, J. Wheaton, and E. Wold, “Method and Article of Manufacture for Content-Based Analysis, Storage, Retrieval and Segmentation of Audio Information,” U.S. Patent 5,918,223, June 1999.Google Scholar
  23. 23.
    C. Papaodysseus, G. Roussopoulos, D. Fragoulis, T. Panagopoulos, and C. Alexiou, “A New Approach to the Automatic Recognition of Musical Recordings,” J. Audio Eng. Soc., vol. 49, no. 1/2, 2001, pp. 23–35.Google Scholar
  24. 24.
    E. Batlle, J. Masip, and E. Guaus, “Automatic Song Identification in Noisy Broadcast Audio,” in Proc. of the SIP, Aug. 2002.Google Scholar
  25. 25.
    Etantrum (2002) [Online]. Available: [http://www.freshmeat.net/projects/songprint].
  26. 26.
    Musicbrainz trm.(2002) musicbrainz-1.1.0.tar.gz. [Online]. Available: [http://ftp.musicbrainz.org/pub/musicbrainz].
  27. 27.
    M. Miller, M. Rodriguez, and I. Cox, “Audio Fingerprinting: Nearest Neighbor Search in High Dimensional Binary Spaces,” in 5th IEEE Int. Workshop on Multimedia Signal Processing: Special session on Media Recognition, US Virgin Islands, USA, Dec. 2002.Google Scholar
  28. 28.
    D. Kirovski and H. Attias, “Beat-id: Identifying Music via Beat Analysis,” in 5th IEEE Int. Workshop on Multimedia Signal Processing: Special session on Media Recognition, US Virgin Islands, USA, Dec. 2002.Google Scholar
  29. 29.
    E. Chávez, G. Navarro, R.A. Baeza-Yates, and J.L. Marroquin, “Searching in Metric Spaces,” ACM Computing Surveys, vol. 33, no. 3, 2001, pp. 273–321.CrossRefGoogle Scholar
  30. 30.
    C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast Subsequence Matching in Time-Series Databases,” in Proc. of the ACM SIGMOD, Mineapolis, MN, 1994, pp. 419–429.Google Scholar
  31. 31.
    S. Kenyon, “Signal Recognition System and Method,” U.S. Patent 5,210,820, 1993.Google Scholar
  32. 32.
    T. Kastner, E. Allamanche, J. Herre, O. Hellmuth, M. Cremer, and H. Grossmann, “MPEG-7 Scalable Robust Audio Fingerprinting,” in Proc. AES 112th Int. Conv., Munich, Germany, May 2002.Google Scholar
  33. 33.
    A.L.-C. Wang and J. Smith II, “System and Methods for Recognizing Sound and Music Signals in High Noise and Distortion,” U.S. Patent Application Publication US 2002/0083060 A1, 2002.Google Scholar
  34. 34.
    P. Cano, M. Kaltenbrunner, O. Mayor, and E. Batlle, “Statistical Significance in Song-Spotting in Audio,” in Proceedings of the International Symposium on Music Information Retrieval, Oct. 2001.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Pedro Cano
    • 1
  • Eloi Batlle
    • 1
  • Ton Kalker
    • 2
  • Jaap Haitsma
    • 2
  1. 1.Music Technology GroupIUA Universitat Pompeu FabraOcataSpain
  2. 2.Philips Research Laboratories EindhovenEindhovenThe Netherlands

Personalised recommendations