# Visual Tracking via Subspace Learning: A Discriminative Approach

- 1k Downloads
- 2 Citations

## Abstract

Good tracking performance is in general attributed to accurate representation over previously obtained targets and/or reliable discrimination between the target and the surrounding background. In this work, a robust tracker is proposed by integrating the advantages of both approaches. A subspace is constructed to represent the target and the neighboring background, and their class labels are propagated simultaneously via the learned subspace. In addition, a novel criterion is proposed, by taking account of both the reliability of discrimination and the accuracy of representation, to identify the target from numerous target candidates in each frame. Thus, the ambiguity in the class labels of neighboring background samples, which influences the reliability of the discriminative tracking model, is effectively alleviated, while the training set still remains small. Extensive experiments demonstrate that the proposed approach outperforms most state-of-the-art trackers.

## Keywords

Visual tracking Discriminative subspace Joint learning Sparse representation Low-rank approximation## References

- Arulampalam, M., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking.
*IEEE Transactions on Signal Processing (TSP)*,*50*(2), 174–188.CrossRefGoogle Scholar - Avidan, S. (2004). Support vector tracking.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*26*(8), 1064–1072.CrossRefGoogle Scholar - Avidan, S. (2007). Ensemble tracking.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*29*(2), 261–271.CrossRefGoogle Scholar - Babenko, B., Member, S., Yang, M. H., & Member, S. (2011). Robust object tracking with online multiple instance learning.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*33*(8), 1619–1632.CrossRefGoogle Scholar - Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
*SIAM Journal on Imaging Sciences*,*2*(1), 183–202.MathSciNetCrossRefzbMATHGoogle Scholar - Cai, J., Candès, E., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion.
*SIAM Journal on Optimization*,*20*(4), 1956–1982.MathSciNetCrossRefzbMATHGoogle Scholar - Candes, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?
*Journal of the ACM*,*58*(3), 1–37.MathSciNetCrossRefzbMATHGoogle Scholar - Danelljan, M., Häger, G., Khan, F. S., & Felsberg, M. (2014). Accurate scale estimation for robust visual tracking. In
*British machine vision conference (BMVC)*Google Scholar - Dinh, T. B., Vo, N., & Medioni, G. (2011). Context tracker: Exploring supporters and distracters in unconstrained environments. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 1177–1184).Google Scholar - Grabner, H., & Bischof, H. (2006). On-line boosting and vision. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*, (Vol. 1, pp. 260–267)Google Scholar - Hager, G. D., & Belhumeur, P. N. (1996). Real-time tracking of image regions with changes in geometry and illumination. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 403–410).Google Scholar - Hare, S., Saffari, A., & Torr, P. (2011). Struck: Structured output tracking with kernels. In
*IEEE international conference on computer vision (ICCV)*(pp. 263–270).Google Scholar - Henriques, F., Caseiro, R., Martins, P., & Batista, J. (2012). Exploiting the circulant structure of tracking-by-detection with kernels. In
*European conference on computer vision (ECCV)*(pp 702–715)Google Scholar - Henriques, J., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*37*(3), 583–596.CrossRefGoogle Scholar - Isard, M. (1998). CONDENSATION: Conditional density propagation for visual tracking.
*International Journal of Computer Vision (IJCV)*,*29*(1), 5–28.CrossRefGoogle Scholar - Jia, X., Lu, H., & Yang, M. H. (2012). Visual tracking via adaptive structural local sparse appearance model. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 1822–1829).Google Scholar - Kalal, Z., Matas, J., & Mikolajczyk, K. (2010). P-N learning: Bootstrapping binary classifiers by structural constraints. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 49–56).Google Scholar - Kalal, Z., Mikolajczyk, K., & Matas, J. (2012). Tracking–learning-detection.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*34*(7), 1409–1422.CrossRefGoogle Scholar - Kriegmant, D. J., Engineering, E., & Haven, N. (1996). What is the set of images of an object under all possible lighting conditions? In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 270–277).Google Scholar - Kwon, J., & Lee, K. (2010). Visual tracking decomposition. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 1269–1276).Google Scholar - Kwon, J., & Lee, K. M. (2011). Tracking by sampling trackers. In
*IEEE international conference on computer vision (ICCV)*(pp. 1195–1202).Google Scholar - Kwon, J., & Lee, K. M. (2014). Tracking by sampling and integrating multiple trackers.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*36*(7), 1428–1441.MathSciNetCrossRefGoogle Scholar - Lasserre, J. A., Bishop, C. M., & Minka, T. P. (2006). Principled hybrids of generative and discriminative models. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(Vol. 6, pp. 87–94).Google Scholar - Lin, Z., Chen, M., & Ma, Y. (2010).
*The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices*. UIUC Technical Report (pp. 1–23).Google Scholar - Liu, B., Huang, J., Yang, L., & Kulikowsk, C. (2011). Robust tracking using local sparse appearance model and K-selection. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 1313–1320).Google Scholar - Liu, S., Zhang, T., Cao, X., & Xu, C. (2016). Structural correlation filter for robust visual tracking. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*.Google Scholar - Liu, B., Huang, J., Kulikowski, C., & Yang, L. (2013). Robust visual tracking using local sparse appearance model and K-selection.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*35*(12), 2968–2981.CrossRefGoogle Scholar - Ma, C., Huang, J. B., Yang, X., & Yang, M. H. (2015a). Hierarchical convolutional features for visual tracking. In
*IEEE international conference on computer vision (ICCV)*(pp. 3074–3082).Google Scholar - Ma, C., Yang, X., Zhang, C., & Yang, Mh. (2015b). Long-term correlation tracking. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 5388–5396).Google Scholar - Mairal, J., Bach, F., & Ponce, J. (2008). Discriminative learned dictionaries for local image analysis. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*.Google Scholar - Mei, X., & Ling, H. (2009). Robust visual tracking using L1 minimization. In
*IEEE international conference on computer vision (ICCV)*(pp. 1436–1443).Google Scholar - Mei, X., & Ling, H. (2011). Robust visual tracking and vehicle classification via sparse representation.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*33*(11), 2259–2272.CrossRefGoogle Scholar - Nam, H., & Han, B. (2016). Learning multi-domain convolutional neural networks for visual tracking. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*.Google Scholar - Ng, A. Y., & Jordan, M. I. (2001). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In
*Advances in Neural Information Processing Systems (NIPS)*(pp. 841–848).Google Scholar - Pati, Y., Rezaiifar, R., & Krishnaprasad, P. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In
*Asilomar conference on signals, systems and computers*(pp. 40–44).Google Scholar - Pham, D. S., & Venkatesh, S. (2008). Joint learning and dictionary construction for pattern recognition. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 1–8).Google Scholar - Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, J., & Yang, M. H. (2016). Hedged deep tracking. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 4303–4311).Google Scholar - Raina, R., & Ng, A. Y. (2007). Self-taught learning : Transfer learning from unlabeled data. In
*International conference on machine learning (ICML)*.Google Scholar - Ross, D. A., Lim, J., Lin, R. S., & Yang, M. H. (2007). Incremental learning for robust visual tracking.
*International Journal of Computer Vision (IJCV)*,*77*(1–3), 125–141.Google Scholar - Sevilla-Lara, L., & Learned-Miller, E. (2012). Distribution fields for tracking. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 1910–1917).Google Scholar - Smeulders, A. W. M., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A., & Shah, M. (2014). Visual tracking: An experimental survey.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*36*(7), 1442–1468.CrossRefGoogle Scholar - Sui, Y., Tang, Y., & Zhang, L. (2015a). Discriminative low-rank tracking. In
*IEEE international conference on computer vision (ICCV)*(pp. 3002–3010).Google Scholar - Sui, Y., Wang, G., & Zhang, L. (2017). Correlation filter learning toward peak strength for visual tracking.
*IEEE Transactions on Cybernetics (TCyb)*. https://doi.org/10.1109/TCYB.2017.2690860. - Sui, Y., Wang, G., Tang, Y., & Zhang, L. (2016a). Tracking completion. In
*European conference on computer vision (ECCV)*.Google Scholar - Sui, Y., Zhang, Z., Wang, G., Tang, Y., & Zhang, L. (2016b). Real-time visual tracking: Promoting the robustness of correlation filter learning. In
*European conference on computer vision (ECCV)*Google Scholar - Sui, Y., & Zhang, L. (2015). Visual tracking via locally structured Gaussian process regression.
*IEEE Signal Processing Letters*,*22*(9), 1331–1335.CrossRefGoogle Scholar - Sui, Y., & Zhang, L. (2016). Robust tracking via locally structured representation.
*International Journal of Computer Vision (IJCV)*,*119*(2), 110–144.MathSciNetCrossRefGoogle Scholar - Sui, Y., Zhang, S., & Zhang, L. (2015b). Robust visual tracking via sparsity-induced subspace learning.
*IEEE Transactions on Image Processing (TIP)*,*24*(12), 4686–4700.MathSciNetCrossRefGoogle Scholar - Sui, Y., Zhao, X., Zhang, S., Yu, X., Zhao, S., & Zhang, L. (2015c). Self-expressive tracking.
*Pattern Recognition (PR)*,*48*(9), 2872–2884.CrossRefGoogle Scholar - Tang, M., & Feng, J. (2015). Multi-kernel correlation filter for visual tracking. In
*IEEE international conference on computer vision (ICCV)*(pp. 3038–3046).Google Scholar - Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
*Journal of the Royal Statistical Society Series B (Methodological)*,*58*(1), 267–288.MathSciNetzbMATHGoogle Scholar - Wang, D., & Lu, H. (2012). Object tracking via 2DPCA and L1-regularization.
*IEEE Signal Processing Letters*,*19*(11), 711–714.CrossRefGoogle Scholar - Wang, D., & Lu, H. (2014). Visual tracking via probability continuous outlier model. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*.Google Scholar - Wang, D., Lu, H., & Yang, M. H. (2013a). Least soft-thresold squares tracking. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 2371–2378).Google Scholar - Wang, D., Lu, H., & Yang, M. H. (2013b). Online object tracking with sparse prototypes.
*IEEE Transactions on Image Processing (TIP)*,*22*(1), 314–325.MathSciNetCrossRefzbMATHGoogle Scholar - Wang, L., Ouyang, W., Wang, X., & Lu, H. (2015). Visual tracking with fully convolutional networks. In
*IEEE international conference on computer vision (ICCV)*(pp. 3119–3127).Google Scholar - Wang, L., Ouyang, W., Wang, X., & Lu, H. (2016). Stct: Sequentially training convolutional networks for visual tracking. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 1373–1381).Google Scholar - Wang, Q., Chen, F., Xu, W., & Yang, M. (2012). Online discriminative object tracking with local sparse representation. In
*IEEE winter conference on applications of computer vision (WACV)*.Google Scholar - Wright, J., Ma, Y., Mairal, J., & Sapiro, G. (2010). Sparse representation for computer vision and pattern recognition.
*Proceedings of The IEEE*,*98*(6), 1031–1044.CrossRefGoogle Scholar - Wu, Y., Lim, J., & Yang, M. H. (2013). Online object tracking: A benchmark. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 2411–2418).Google Scholar - Wu, Y., Lim, J., & Yang, M. H. (2015). Object tracking benchmark.
*IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*,*37*(9), 1834–1848.CrossRefGoogle Scholar - Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey.
*ACM Computing Surveys*,*38*(4), 13–57.CrossRefGoogle Scholar - Zhang, C., Liu, R., Qiu, T., & Su, Z. (2014a). Robust visual tracking via incremental low-rank features learning.
*Neurocomputing*,*131*, 237–247.CrossRefGoogle Scholar - Zhang, K., Liu, Q., Wu, Y., & Yang, M. H. (2016a). Robust visual tracking via convolutional networks without training.
*IEEE Transactions on Image Processing (TIP)*,*25*(4), 1779–1792.MathSciNetGoogle Scholar - Zhang, K., Zhang, L., & Yang, M. H. (2012a). Real-time compressive tracking. In
*European conference on computer vision (ECCV)*(pp. 866–879).Google Scholar - Zhang, K., Zhang, L., & Yang, M. H. (2013a). Real-time object tracking via online discriminative feature selection.
*IEEE Transactions on Image Processing (TIP)*,*22*(12), 4664–4677.MathSciNetCrossRefzbMATHGoogle Scholar - Zhang, T., Bibi, A., & Ghanem, B. (2016b). In defense of sparse tracking: Circulant sparse tracker. In
*CVPR*.Google Scholar - Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012b). Low-rank sparse learning for robust visual tracking. In
*European conference on computer vision (ECCV)*(pp. 470–484).Google Scholar - Zhang, T., Liu, S., Xu, C., Yan, S., Ghanem, B., Ahuja, N., & Yang, Mh. (2015). Structural sparse tracking. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 150–158).Google Scholar - Zhang, T., Liu, S., Ahuja, N., Yang, M. H., & Ghanem, B. (2014b). Robust visual tracking via consistent low-rank sparse learning.
*International Journal of Computer Vision (IJCV)*,*111*(2), 171–190.CrossRefGoogle Scholar - Zhang, S., Yao, H., Sun, X., & Lu, X. (2013b). Sparse coding based visual tracking: Review and experimental comparison.
*Pattern Recognition*,*46*(7), 1772–1788.Google Scholar - Zhong, W., Lu, H., & Yang, M. H. (2012). Robust object tracking via sparsity-based collaborative model. In
*IEEE Computer Society conference on computer vision and pattern recognition (CVPR)*(pp. 1838–1845).Google Scholar - Zhong, W., Lu, H., & Yang, M. H. (2014). Robust object tracking via sparse collaborative appearance model.
*IEEE Transactions on Image Processing (TIP)*,*23*(5), 2356–68.MathSciNetCrossRefzbMATHGoogle Scholar - Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.
*Journal of the Royal Statistical Society: Series B (Statistical Methodology)*,*67*(2), 301–320.MathSciNetCrossRefzbMATHGoogle Scholar - Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis.
*Journal of Computational and Graphical Statistics*,*15*(2), 265–286.MathSciNetCrossRefGoogle Scholar