Advertisement

International Journal of Computer Vision

, Volume 126, Issue 5, pp 460–475 | Cite as

Dense Reconstruction of Transparent Objects by Altering Incident Light Paths Through Refraction

  • Kai Han
  • Kwan-Yee K. Wong
  • Miaomiao Liu
Article

Abstract

This paper addresses the problem of reconstructing the surface shape of transparent objects. The difficulty of this problem originates from the viewpoint dependent appearance of a transparent object, which quickly makes reconstruction methods tailored for diffuse surfaces fail disgracefully. In this paper, we introduce a fixed viewpoint approach to dense surface reconstruction of transparent objects based on refraction of light. We present a simple setup that allows us to alter the incident light paths before light rays enter the object by immersing the object partially in a liquid, and develop a method for recovering the object surface through reconstructing and triangulating such incident light paths. Our proposed approach does not need to model the complex interactions of light as it travels through the object, neither does it assume any parametric form for the object shape nor the exact number of refractions and reflections taken place along the light paths. It can therefore handle transparent objects with a relatively complex shape and structure, with unknown and inhomogeneous refractive index. We also show that for thin transparent objects, our proposed acquisition setup can be further simplified by adopting a single refraction approximation. Experimental results on both synthetic and real data demonstrate the feasibility and accuracy of our proposed approach.

Keywords

Reconstruction Transparent object Refraction Light path 

Notes

Acknowledgements

This project is supported by a Grant from the Research Grant Council of the Hong Kong (SAR), China, under the Project HKU 718113E.

References

  1. Balzer, J., & Werling, S. (2010). Principles of shape from specular reflection. Measurement, 43(10), 1305–1317.CrossRefGoogle Scholar
  2. Batlle, J., Mouaddib, E., & Salvi, J. (1998). Recent progress in coded structured light as a technique to solve the correspondence problem: A survey. Pattern Recognition, 31(7), 963–982.CrossRefGoogle Scholar
  3. Ben-Ezra, M., & Nayar, S. K. (2003). What does motion reveal about transparency? In ICCV (Vol. 2, pp. 1025–1032).Google Scholar
  4. Bouguet, J. Y. (2008). Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/.
  5. Chari, V., & Sturm, P. (2013). A theory of refractive photo-light-path triangulation. In CVPR (pp. 1438–1445).Google Scholar
  6. Ding, Y., Li, F., Ji, Y., Yu, J. (2011). Dynamic fluid surface acquisition using a camera array. In ICCV (pp. 2478–2485).Google Scholar
  7. Eren, G., Aubreton, O., Meriaudeau, F., Secades, L. A. S., Fofi, D., Naskali, A. T., et al. (2009). Scanning from heating: 3D shape estimation of transparent objects from local surface heating. Optics Express, 17(14), 11457–11468.CrossRefGoogle Scholar
  8. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRefGoogle Scholar
  9. Han, K., Wong, K. Y. K., & Liu, M. (2015). A fixed viewpoint approach for dense reconstruction of transparent objects. In CVPR (pp. 4001–4008).Google Scholar
  10. Hata, S., Saitoh, Y., Kumamura, S., & Kaida, K. (1996). Shape extraction of transparent object using genetic algorithm. In ICPR (Vol. 4, pp. 684–688).Google Scholar
  11. Hullin, M. B., Fuchs, M., Ihrke, I., Seidel, H. P., & Lensch, H. P. A. (2008). Fluorescent immersion range scanning. In SIGGRAPH (pp. 87:1–87:10).Google Scholar
  12. Ihrke, I., Goidluecke, B., & Magnor, M. (2005). Reconstructing the geometry of flowing water. In ICCV (Vol. 2, pp. 1055–1060).Google Scholar
  13. Ihrke, I., Kutulakos, K. N., Lensch, H. P. A., Magnor, M., & Heidrich, W. (2008). State of the art in transparent and specular object reconstruction. In Eurographics STAR (pp. 87–108).Google Scholar
  14. Ihrke, I., Kutulakos, K. N., Lensch, H. P. A., Magnor, M., & Heidrich, W. (2010). Transparent and specular object reconstruction. Computer Graphics Forum, 29(8), 2400–2426.CrossRefGoogle Scholar
  15. Inokuchi, S., Sato, K., & Matsuda, F. (1984). Range-imaging for 3-d object recognition. In ICPR (pp. 806–808).Google Scholar
  16. Ji, Y., Ye, J., Yu, J. (2013). Reconstructing gas flows using light-path approximation. In CVPR (pp. 2507–2514).Google Scholar
  17. Kutulakos, K. N., & Steger, E. (2005). A theory of refractive and specular 3D shape by light-path triangulation. In ICCV (Vol. 2, pp. 1448–1455).Google Scholar
  18. Kutulakos, K. N., & Steger, E. (2008). A theory of refractive and specular 3D shape by light-path triangulation. IJCV, 76(1), 13–29.CrossRefGoogle Scholar
  19. Liu, D., Chen, X., & Yang, Y. H. (2014). Frequency-based 3D reconstruction of transparent and specular objects. In CVPR (pp. 660–667).Google Scholar
  20. Ma, C., Lin, X., Suo, J., Dai, Q., & Wetzstein, G. (2014). Transparent object reconstruction via coded transport of intensity. In CVPR (pp. 3238–3245).Google Scholar
  21. Miyazaki, D., & Ikeuchi, K. (2005). Inverse polarization raytracing: Estimating surface shapes of transparent objects. In CVPR (Vol. 2, pp. 910–917).Google Scholar
  22. Morris, N. J. W., & Kutulakos, K. N. (2007). Reconstructing the surface of inhomogeneous transparent scenes by scatter-trace photography. In ICCV (pp. 1–8).Google Scholar
  23. Morris, N. J. W., & Kutulakos, K. N. (2011). Dynamic refraction stereo. PAMI, 33(10), 1518–1531.CrossRefGoogle Scholar
  24. Murase, H. (1990). Surface shape reconstruction of an undulating transparent object. In ICCV (pp. 313–317).Google Scholar
  25. Murase, H. (1992). Surface shape reconstruction of a nonrigid transport object using refraction and motion. PAMI, 14(10), 1045–1052.CrossRefGoogle Scholar
  26. Narasimhan, S. G., Nayar, S. K., Sun, B., & Koppal, S. J. (2005). Structured light in scattering media. In ICCV (pp. 420–427).Google Scholar
  27. O’Toole, M., Mather, J., & Kutulakos, K. N. (2014). 3D shape and indirect appearance by structured light transport. In CVPR (pp. 3246–3253).Google Scholar
  28. Qian, Y., Gong, M., & Yang, Y. H. (2016). 3D reconstruction of transparent objects with position-normal consistency. In CVPR (pp. 4369–4377).Google Scholar
  29. Reshetouski, I., & Ihrke, I. (2013). Mirrors in computer graphics, computer vision and time-of-flight imaging. Lecture Notes in Computer Science, 8200, 77–104.CrossRefGoogle Scholar
  30. Shan, Q., Agarwal, S., & Curless, B. (2012). Refractive height fields from single and multiple images. In CVPR (pp. 286–293).Google Scholar
  31. Torr, P. H. S., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. CVIU, 78(1), 138–156.Google Scholar
  32. Trifonov, B., Bradley, D., & Heidrich, W. (2006). Tomographic reconstruction of transparent objects. In EGSR (pp. 51–60).Google Scholar
  33. Tsai, C., Veeraraghavan, A., & Sankaranarayanan, A. C. (2015). What does a single light-ray reveal about a transparent object? In ICIP (pp. 606–610).Google Scholar
  34. Wetzstein, G., Roodnick, D., Heidrich, W., & Raskar, R. (2011). Refractive shape from light field distortion. In ICCV (pp. 1180–1186).Google Scholar
  35. Wust, C., & Capson, D. W. (1991). Surface profile measurement using color fringe projection. Machine Vision and Applications, 4(3), 193–203.CrossRefGoogle Scholar
  36. Xie, W., Zhang, Y., Wang, C. C. L., & Chung, R. C. K. (2014). Surface-from-gradients: An approach based on discrete geometry processing. In CVPR (pp. 2203–2210).Google Scholar
  37. Yeung, S. K., Wu, T. P., Tang, C. K., Chan, T. F., & Osher, S. (2011). Adequate reconstruction of transparent objects on a shoestring budget. In CVPR (pp. 2513–2520).Google Scholar
  38. Zuo, X., Du, C., Wang, S., Zheng, J., & Yang, R. (2015). Interactive visual hull refinement for specular and transparent object surface reconstruction. In ICCV (pp. 2237–2245).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.The University of Hong KongHong KongChina
  2. 2.Data61, CSIRO and CECSAustralian National UniversityCanberraAustralia

Personalised recommendations