International Journal of Computer Vision

, Volume 123, Issue 3, pp 435–453 | Cite as

Iterative Multiplicative Filters for Data Labeling

  • Ronny Bergmann
  • Jan Henrik Fitschen
  • Johannes Persch
  • Gabriele Steidl
Article

Abstract

Based on an idea in Åström et al. (J Math ImagingVis, doi: 10.1007/s10851-016-0702-4, 2017) we propose a new iterative multiplicative filtering algorithm for label assignment matrices which can be used for the supervised partitioning of data. Starting with a row-normalized matrix containing the averaged distances between prior features and observed ones, the method assigns in a very efficient way labels to the data. We interpret the algorithm as a gradient ascent method with respect to a certain function on the product manifold of positive numbers followed by a reprojection onto a subset of the probability simplex consisting of vectors whose components are bounded away from zero by a small constant. While such boundedness away from zero is necessary to avoid an arithmetic underflow, our convergence results imply that they are also necessary for theoretical reasons. Numerical examples show that the proposed simple and fast algorithm leads to very good results. In particular we apply the method for the partitioning of manifold-valued images.

Keywords

Labeling Supervised partitioning Multiplicative filter Partitioning Manifold-valued images 

Notes

Acknowledgements

We are grateful to Ch. Schnörr (University of Heidelberg) for stimulating discussions. Many thanks to R. Hielscher (University of Chemnitz) for supporting the work on EBSD data. We thank the referees for requesting a discussion of condition (PI). Funding by the German Research Foundation (DFG) within the Project STE 571/13-1 & BE 5888/2-1 and within the Research Training Group 1932 “Stochastic Models for Innovations in the Engineering Sciences”, project area P3, is gratefully acknowledged. Furthermore, G. Steidl acknowledges the support by the German Federal Ministry of Education and Research (BMBF) through Grant 05M13UKA (AniS).

References

  1. Adams, B. L., Wright, S. I., & Kunze, K. (1993). Orientation imaging: The emergence of a new microscopy. Journal Metallurgical and Materials Transactions A, 24, 819–831.CrossRefGoogle Scholar
  2. Arsigny, V., Fillard, P., Pennec, X., & Ayache, N. (2006). Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56(2), 411–421.CrossRefGoogle Scholar
  3. Åström, F., Petra, S., Schmitzer, B., & Schnörr, C. (2016a). A geometric approach to image labeling. In Proceedings of the ECCV.Google Scholar
  4. Åström, F., Petra, S., Schmitzer, B., & Schnörr, C. (2016b). The Assignment Manifold: A smooth model for image labeling. In Proceedings of the 2nd international workshop on differential geometry in computer vision and machine learning.Google Scholar
  5. Åström, F., Petra, S., Schmitzer, B., & Schnörr, C. (2017). Image labeling by assignment. Journal of Mathematical Imaging and Vision. doi: 10.1007/s10851-016-0702-4.
  6. Bachmann, F., & Hielscher, R. (2005–2016). MTEX—MATLAB toolbox for quantitative texture analysis. http://mtex-toolbox.github.io/.
  7. Bachmann, F., Hielscher, R., & Schaeben, H. (2011). Grain detection from 2d and 3d EBSD data-specification of the MTEX algorithm. Ultramicroscopy, 111(12), 1720–1733.CrossRefGoogle Scholar
  8. Bae, E., Yuan, J., & Tai, X.-C. (2011). Global minimization for continuous multiphase partitioning problems using a dual approach. International Journal of Computer Vision, 92(1), 112–129.MathSciNetCrossRefMATHGoogle Scholar
  9. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373–1396.CrossRefMATHGoogle Scholar
  10. Buades, A., Coll, B., & Morel, J.-M. (2006). Neighborhood filters and PDEs. Numerische Mathematik, 105, 1–34.MathSciNetCrossRefMATHGoogle Scholar
  11. Buades, A., Coll, B., & Morel, J.-M. (2010). Image denoising methods. A new nonlocal principle. SIAM Review, 52(1), 113–147.MathSciNetCrossRefMATHGoogle Scholar
  12. Burger, M., Sawatzky, A., & Steidl, G. (2016). First order algorithms in variational image processing. In R. Glowinski, S. Osher, & W. Yin (Eds.), Operator splittings and alternating direction methods. Berlin: Springer.Google Scholar
  13. Cai, X., Chan, R., & Zeng, T. (2013). A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding. SIAM Journal on Imaging Sciences, 6(1), 368–390.MathSciNetCrossRefMATHGoogle Scholar
  14. Chambolle, A., Cremers, D., & Pock, T. (2012). A convex approach to minimal partitions. SIAM Journal on Imaging Sciences, 5(4), 1113–1158.MathSciNetCrossRefMATHGoogle Scholar
  15. Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120–145.MathSciNetCrossRefMATHGoogle Scholar
  16. Chan, T. F., Esedoglu, S., & Nikolova, M. (2006). Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics, 66(5), 1632–1648.MathSciNetCrossRefMATHGoogle Scholar
  17. Chaux, C., Jezierska, A., Pesquet, J.-C., & Talbot, H. (2011). A spatial regularization approach for vector quantization. Journal of Mathematical Imaging and Vision, 41(1–2), 23–38.MathSciNetCrossRefMATHGoogle Scholar
  18. Cook, P. A., Bai, Y., Nedjati-Gilani, S., Seunarine, K. K., Hall, M. G., Parker, G. J., & Alexander, D. C. (2006)(2006) Camino: Open-source diffusion-MRI reconstruction and processing. In 14th Scientific meeting of the international society for magnetic resonance in medicine (p. 2759). Seattle, WA.Google Scholar
  19. Deledalle, C. A., Denis, L., & Tupin, F. (2009). Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Transactions on Image Processing, 18(12), 2661–2672.MathSciNetCrossRefGoogle Scholar
  20. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.MathSciNetCrossRefGoogle Scholar
  21. Folland, G. B. (1999). Real analysis. New York: Wiley.MATHGoogle Scholar
  22. Frobenius, G. F. (1912). Über Matrizen aus nichtnegativen Elementen. Königliche Akademie der Wissenschaften.Google Scholar
  23. Gilboa, G., & Osher, S. (2007). Nonlocal linear image regularization and supervised segmentation. SIAM Journal on Multiscale Modeling and Simulation, 6(2), 595–630.MathSciNetCrossRefMATHGoogle Scholar
  24. Gräf, M. (2012). A unified approach to scattered data approximation on \(\mathbb{S}^{3}\) and \(\operatorname{SO}(3)\). Advances in Computational Mathematics, 37, 379–392.MathSciNetCrossRefMATHGoogle Scholar
  25. Häuser, S., & Steidl, G. (2013). Convex multiclass segmentation with shearlet regularization. International Journal of Computer Mathematics, 90(1), 62–81.MathSciNetCrossRefMATHGoogle Scholar
  26. Herault, L., & Horaud, R. (1993). Figure-ground discrimination: A combinatorial optimization approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 899–914.CrossRefGoogle Scholar
  27. Hofmann, T., & Buhmann, J. M. (1997). Pairwise data clustering by deterministic annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1), 1–14.CrossRefGoogle Scholar
  28. Horn, R. A., & Johnson, C. R. (2013). Matrix analysis (2nd ed.). Cambridge, MA: Cambridge University Press.MATHGoogle Scholar
  29. Hummel, R. A., & Zucker, S. W. (1983). On the foundation of relaxation labeling processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, 5(3), 267–287.CrossRefMATHGoogle Scholar
  30. Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., et al. (2015). A comparative study of modern inference techniques for structured discrete energy minimization problems. International Journal of Computer Vision, 115(2), 155–184.MathSciNetCrossRefGoogle Scholar
  31. Kolmogorov, V. (2006). Convergent tree-reweighted message passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1568–1583.CrossRefGoogle Scholar
  32. Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2), 147–159.CrossRefMATHGoogle Scholar
  33. Kunze, K., Wright, S. I., Adams, B. L., & Dingley, D. J. (1993). Advances in automatic EBSP single orientation measurements. Textures and Microstructures, 20, 41–54.CrossRefGoogle Scholar
  34. Laus, F., Persch, J., & Steidl, G. (2016). A nonlocal denoising algorithm for manifold-valued images using second order statistics. SIAM Journal on Imaging Sciences. ArXiv, Preprint arXiv:1607.08481.
  35. Lellmann, J., Lenzen, F., & Schnörr, C. (2013). Optimality bounds for a variational relaxation of the image partitioning problem. Journal of Mathematical Imaging and Vision, 47(3), 239–257.MathSciNetCrossRefMATHGoogle Scholar
  36. Lellmann, J., & Schnörr, C. (2011). Continuous multiclass labeling approaches and algorithms. SIAM Journal on Imaging Sciences, 4(4), 1049–1096.MathSciNetCrossRefMATHGoogle Scholar
  37. Moakher, M., & Batchelor, P. G. (2006). Symmetric positive-definite matrices: From geometry to applications and visualization. In Visualization and processing of tensor fields (pp. 285–298). Berlin: Springer.Google Scholar
  38. Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5), 577–685.MathSciNetCrossRefMATHGoogle Scholar
  39. Nolze, G., & Hielscher, R. (2016). IPF coloring of crystal orientation data. Preprint Technische Universität Chemnitz.Google Scholar
  40. Orland, H. (1985). Mean-field theory for optimization problems. Journal de Physique Lettres, 46(17), 763–770.CrossRefGoogle Scholar
  41. Pelillo, M. (1997). The dynamics of nonlinear relaxation labeling processes. Journal of Mathematical Imaging and Vision, 7, 309–323.MathSciNetCrossRefGoogle Scholar
  42. Pennec, X., Fillard, P., & Ayache, N. (2006). A Riemannian framework for tensor computing. International Journal of Computer Vision, 66, 41–66.CrossRefMATHGoogle Scholar
  43. Perron, O. (1907). Zur Theorie der Matrizen. Mathematische Annalen, 64(2), 248–263.MathSciNetCrossRefMATHGoogle Scholar
  44. Peyré, G. (2015). Entropic Wasserstein gradient flows. ArXiv Preprint arXiv:1502.06216v3.
  45. Rosenfeld, A., Hummel, R. A., & Zucker, S. W. (1976). Scene labeling by relaxation operations. IEEE Transactions on Systems, Man and Cybernetics, SMC, 6(6), 420–433.MathSciNetCrossRefMATHGoogle Scholar
  46. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60(1), 259–268.MathSciNetCrossRefMATHGoogle Scholar
  47. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., et al. (2008). A comparative study of energy minimizing methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6), 1068–1080.CrossRefGoogle Scholar
  48. Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Proceedings of the sixth international conference on computer vision (pp. 839–846). Bombay. Narosa Publishing House.Google Scholar
  49. Tuzel, O., Porikli, F., & Meer, P. (2006). Region covariance: A fast descriptor for detection and classification. In European conference on computer vision (pp. 589–600). Berlin: Springer.Google Scholar
  50. Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1–2), 1–305.MATHGoogle Scholar
  51. Weickert, J. (1998). Anisotropic diffusion in image processing. Stuttgart: Teubner.MATHGoogle Scholar
  52. Wielandt, H. (1950). Unzerlegbare, nicht negative Matrizen. Mathematische Zeitschrift, 52(1), 642–648.MathSciNetCrossRefMATHGoogle Scholar
  53. Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2005). Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51(7), 2282–2312.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations