Advertisement

International Journal of Computer Vision

, Volume 121, Issue 3, pp 391–402 | Cite as

2D Sub-pixel Point Spread Function Measurement Using a Virtual Point-Like Source

  • Jurij JemecEmail author
  • Franjo Pernuš
  • Boštjan Likar
  • Miran Bürmen
Article

Abstract

2D point spread function (PSF) is a commonly used measure to assess the quality of various imaging systems. The most convenient way of 2D PSF measurement is taking an image of a light source with its size well below the diffraction limit of the imaging system. In this paper, we present a novel method that allows formation of such a virtual point-like source by a simple setup with a convex spherical mirror and a collimated light source. Sub-pixel 2D PSF measurements are possible by displacing the setup in sub-pixel steps. Comparison of the 1D modulation transfer functions estimated by the proposed method and the International Organization for Standardization (ISO) 12233 standard shows that the proposed method presents a viable alternative to the ISO 12233 standard. Furthermore, future work on calibration patterns and algorithms for sub-pixel 2D PSF estimation from a single image could benefit from the presented method, which provides ground truth sub-pixel 2D PSF measurements for real imaging systems.

Keywords

Virtual point-like source Two-dimensional sub-pixel point spread function 2D PSF Modulation transfer function Imaging system quality assessment ISO 12233 

Notes

Acknowledgments

This research was supported by the Slovenian Research Agency, under Grants J7-6781, J2-5473, L2-5472 and L2-4072.

References

  1. Arnison, M. R., Morgan-Mar, D. P., Deller, C. A., Fletcher, P. A., & Larkin, K. G. (2011). Measurement of the lens optical transfer function using a tartan pattern. Applied Optics, 50(15), 2158–2169.CrossRefGoogle Scholar
  2. Bass, M., & Mahajan, V. N. (2010). Handbook of optics, Vol. I: Geometrical and physical optics, polarized light, components and instruments. New York: McGraw-Hill.Google Scholar
  3. Boone, J. M., & Seibert, J. A. (1994). An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF. Medical Physics, 21(10), 1541–1545.CrossRefGoogle Scholar
  4. Boreman, G. D., & Yang, S. (1995). Modulation transfer function measurement using three-and four-bar targets. Applied Optics, 34(34), 8050–8052.CrossRefGoogle Scholar
  5. Burns, P. D. (2000). Slanted-edge MTF for digital camera and scanner analysis. In IS&T PICS Conference (pp. 135–138).Google Scholar
  6. Burns, P. D. (2015). sfrmat3. Accessed June 15, 2015, from http://losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html.
  7. Burns, P. D., & Williams, D. (2002). Refined slanted-edge measurement for practical camera and scanner testing. In IS&T PICS conference (pp. 191–195).Google Scholar
  8. Claxton, C. D., & Staunton, R. C. (2008). Measurement of the point-spread function of a noisy imaging system. JOSA A, 25(1), 159–170.CrossRefGoogle Scholar
  9. Cracknell, A. (1998). Review article synergy in remote sensing-what’s in a pixel? International Journal of Remote Sensing, 19(11), 2025–2047.CrossRefGoogle Scholar
  10. Delbracio, M., Almansa, A., Morel, J. M., & Musé, P. (2012a). Subpixel point spread function estimation from two photographs at different distances. SIAM Journal on Imaging Sciences, 5(4), 1234–1260.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Debracio, M., & Musé, P. (2012b). Non-parametric sub-pixel local point spread function estimation. Image Processing on Line, 2, 8–21.CrossRefGoogle Scholar
  12. Delbracio, M., Musé, P., Almansa, A., & Morel, J. M. (2012c). The non-parametric sub-pixel local point spread function estimation is a well posed problem. International Journal of Computer Vision, 96(2), 175–194.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Du, H., & Voss, K. J. (2004). Effects of point-spread function on calibration and radiometric accuracy of CCD camera. Applied Optics, 43(3), 665–670.CrossRefGoogle Scholar
  14. Fetterly, K. A., Hangiandreou, N. J., Schueler, B. A., & Ritenour, E. R. (2002). Measurement of the presampled two-dimensional modulation transfer function of digital imaging systems. Medical Physics, 29(5), 913–921.CrossRefGoogle Scholar
  15. Frenkel, A., Sartor, M., & Wlodawski, M. (1997). Photon-noise-limited operation of intensified CCD cameras. Applied Optics, 36(22), 5288–5297.CrossRefGoogle Scholar
  16. Guenther, B. (1990). Modern Optics. Hoboken, NJ: Wiley.zbMATHGoogle Scholar
  17. Imatest LLC (2004–2015) Sharpness: What is it and how is it measured? Accessed. June 15, 2015, from http://www.imatest.com/docs/sharpness/.
  18. Joshi, N., Szeliski, R., Kriegman, D. J. (2008). PSF estimation using sharp edge prediction. In IEEE computer society conference on computer vision and pattern recognition (CVPR 2008) (pp. 1–8).Google Scholar
  19. Katrašnik, J., Pernuš, F., & Likar, B. (2013). Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems. Applied Optics, 52(15), 3526–3537.CrossRefGoogle Scholar
  20. Kee, E., Paris, S., Chen, S., Wang, J. (2011). Modeling and removing spatially-varying optical blur. In 2011 IEEE international conference on computational photography (ICCP) (pp. 1–8).Google Scholar
  21. Kim, K. S. (1994). Accurate determination of subpixel resolution point spread function from imprecise measurement data. In SPIE’s international symposium on optical engineering and photonics in aerospace sensing, international society for optics and photonics (pp. 185–192).Google Scholar
  22. Lamberts, R., Higgins, G., & Wolfe, R. (1958). Measurement and analysis of the distribution of energy in optical images. JOSA, 48(7), 487–487.CrossRefGoogle Scholar
  23. Lehr, J., Sibarita, J. B., & Chassery, J. M. (1998). Image restoration in X-ray microscopy: PSF determination and biological applications. IEEE Transactions onImage Processing, 7(2), 258–263.CrossRefGoogle Scholar
  24. Lenhard, K., Baumgartner, A., Gege, P., Nevas, S., Nowy, S., & Sperling, A. (2015). Impact of improved calibration of a NEO HySpex VNIR-1600 sensor on remote sensing of water depth. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 6085–6098.CrossRefGoogle Scholar
  25. Markham, B. L. (1985). The Landsat sensors’ spatial responses. IEEE Transactions on Geoscience and Remote Sensing, 6, 864–875.CrossRefGoogle Scholar
  26. Milanfar, P. (2010). Super-resolution imaging. Boca Raton: CRC Press.Google Scholar
  27. Mosleh, A., Green, P., Onzon, E., Begin, I., & Pierre Langlois, J. (2015). Camera intrinsic blur kernel estimation: A reliable framework. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4961–4968).Google Scholar
  28. Navas-Moya, F. A., Nieves, J. L., Valero, E. M., & Garrote, E. (2013). Measurement of the optical transfer function using a white-dot pattern presented on a liquid-crystal display. Journal of the European Optical Society, 8 Google Scholar
  29. Park, S. C., Park, M. K., & Kang, M. G. (2003). Super-resolution image reconstruction: A technical overview. Signal processing magazine, IEEE, 20(3), 21–36.Google Scholar
  30. Quabis, S., Dorn, R., Eberler, M., Glöckl, O., & Leuchs, G. (2001). The focus of light-theoretical calculation and experimental tomographic reconstruction. Applied Physics B, 72(1), 109–113 .CrossRefGoogle Scholar
  31. Reichenbach, S. E., Park, S. K., & Narayanswamy, R. (1991). Characterizing digital image acquisition devices. Optical Engineering, 30(2), 170–177.CrossRefGoogle Scholar
  32. Ryu, Z. M. (1991). Measurement of point spread function of thermal imager. Orlando’91 (pp. 469–474). Orlando: International Society for Optics and Photonics.Google Scholar
  33. Sambridge, M., Braun, J., & McQueen, H. (1995). Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophysical Journal International, 122(3), 837–857.CrossRefGoogle Scholar
  34. Samei, E., Flynn, M. J., & Reimann, D. A. (1998). A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Medical Physics, 25(1), 102–113.CrossRefGoogle Scholar
  35. Shih, Y., Guenter, B., & Joshi, N. (2012). Image enhancement using calibrated lens simulations. In Computer Vision–ECCV 2012 (pp. 42–56). Berlin: Springer.Google Scholar
  36. Szeliski, R. (2010). Computer vision: Algorithms and applications. Berlin: Springer.zbMATHGoogle Scholar
  37. Takenaga, T., Katsuragawa, S., Goto, M., Hatemura, M., Uchiyama, Y., & Shiraishi, J. (2015). Modulation transfer function measurement of CT images by use of a circular edge method with a logistic curve-fitting technique. Radiological Physics and Technology, 8(1), 53–59.CrossRefGoogle Scholar
  38. Torkildsen, H, Hovland, H., Opsahl, T., Haavardsholm, T., Nicolas, S., & Skauli, T. (2014). Characterization of a compact 6-band multifunctional camera based on patterned spectral filters in the focal plane. In SPIE defense+ security, international society for optics and photonics (pp. 908819–908819).Google Scholar
  39. Tzannes, A. P., & Mooney, J. M. (1995). Measurement of the modulation transfer function of infrared cameras. Optical Engineering, 34(6), 1808–1817.CrossRefGoogle Scholar
  40. Ye, M., Wang, B., Uchida, M., Yanase, S., Takahashi, S., & Sato, S. (2012). Focus tuning by liquid crystal lens in imaging system. Applied Optics, 51(31), 7630–7635.CrossRefGoogle Scholar
  41. Zandhuis, J., Pycock, D., Quigley, S., & Webb, P. (1997). Sub-pixel non-parametric PSF estimation for image enhancement. IEE Proceedings-Vision, Image and Signal Processing, 144, 285–292.CrossRefGoogle Scholar
  42. Zong, Y., Brown, S. W., Meister, G., Barnes, R. A., & Lykke, K. R. (2007). Characterization and correction of stray light in optical instruments vol. (6744), pp. 67441L-1-67441L-11.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jurij Jemec
    • 1
    Email author
  • Franjo Pernuš
    • 1
    • 2
  • Boštjan Likar
    • 1
    • 2
  • Miran Bürmen
    • 1
  1. 1.Laboratory of Imaging Technologies, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.SENSUM, Computer Vision SystemsLjubljanaSlovenia

Personalised recommendations