# Trinocular Geometry Revisited

- 507 Downloads
- 4 Citations

## Abstract

When do the visual rays associated with triplets of point correspondences converge, that is, intersect in a common point? Classical models of trinocular geometry based on the fundamental matrices and trifocal tensor associated with the corresponding cameras only provide partial answers to this fundamental question, in large part because of underlying, but seldom explicit, general configuration assumptions. This paper uses elementary tools from projective line geometry to provide necessary and sufficient geometric and analytical conditions for convergence in terms of transversals to triplets of visual rays, without any such assumptions. In turn, this yields a novel and simple minimal parameterization of trinocular geometry for cameras with non-collinear or collinear pinholes, which can be used to construct a practical and efficient method for trinocular geometry parameter estimation. We present numerical experiments using synthetic and real data.

## Keywords

Trinocular geometry Trilinearities Minimal parameterizations of camera geometry Camera parameter estimation## Notes

### Acknowledgments

This work was supported in part by the ERC grant VideoWorld, the Institut Universitaire de France, the Inria - CMU associate team GAYA, and ONR MURI N000141010934.

## References

- Canterakis, N. (2000). A minimal set of constraints for the trifocal tensor. In
*ECCV*.Google Scholar - Carlsson, S. (1995). Duality of reconstruction and positioning in multiple views. In
*Proceedings of the worshop on representation of visual scenes*.Google Scholar - Faugeras, O., & Mourrain, B. (1995). On the geometry and algebra of the point and line correspondences between \(n\) images. Technical Report 2665, INRIA.Google Scholar
- Forsyth, D. A., & Ponce, J. (2003a).
*Computer vision: A modern approach*. Upper Saddle River, NJ: Prentice-Hall.Google Scholar - Forsyth, D. A., & Ponce, J. (2003b).
*Computer vision: A modern approach*(2nd ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar - Hartley, R. (1997). Lines and points in three views and the trifocal tensor.
*International Journal of Computer Vision*,*22*(2), 125–140.CrossRefGoogle Scholar - Hartley, R., & Zisserman, A. (2000).
*Multiple view geometry in computer vision*. Cambridge: Cambridge University Press.zbMATHGoogle Scholar - Heyden, A., & Astrom, K. (1997). Algebraic properties of multilinear constraints.
*Mathematical Methods in the Applied Sciences*,*20*(13), 1135–1162.MathSciNetCrossRefzbMATHGoogle Scholar - Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections.
*Nature*,*293*, 133–135.CrossRefGoogle Scholar - Luong, Q.-T., & Faugeras, O. D. (1996). The fundamental matrix: Theory, algorithms, and stability analysis.
*International Journal of Computer Vision*,*17*(1), 43–76.CrossRefGoogle Scholar - McGlone, J. C. (Ed.). (2004).
*Manual of photogrammetry*(5th ed.). Bethesda: ASPRS.Google Scholar - Papadopoulo, T., & Faugeras, O. (1998). A new characterization of the trifocal tensor. In
*ECCV*.Google Scholar - Ponce, J., & Hebert, M. (2014). Trinocular geometry revisited. In
*CVPR*.Google Scholar - Ponce, J., Marimont, D. H., & Cass. T. A. (1994). Analytical methods for uncalibrated stereo and motion reconstruction. In: Eklundh, J.-O. (Eds),
*ECCV, volume 800 of Lecture Notes in Computer Science*(pp. 463–470). Berlin: Springer.Google Scholar - Ponce, J., McHenry, K., Papadopoulo, T., Teillaud, M., & Triggs, B. (2005). The absolute quadratic complex and its application to camera self calibration. In
*CVPR*.Google Scholar - Pottmann, H., & Wallner, J. (2001).
*Computational line geometry*. Berlin: Springer.zbMATHGoogle Scholar - Quan, L. (1995). Invariants of six points and projective reconstruction from three uncalibrated images.
*IEEE Transactions on Pattern Analysis and Machine Intelligence*,*17*(1), 34–46.CrossRefGoogle Scholar - Ressl, C. (2002). A minimal set of constraints and a minimal parameterization for the trifocal tensor. In:
*ISPRS-Comm. III Symposium, Vol. XXXIV, Part 3A*.Google Scholar - Shashua, A. (1995). Algebraic functions for recognition.
*IEEE Transactions on Pattern Analysis and Machine Intelligence*,*17*(8), 779–789.CrossRefGoogle Scholar - Spetsakis, M. E., & Aloimonos, Y. (1990). Structure from motion using line correspondences.
*International Journal of Computer Vision*,*4*(3), 171–183.CrossRefGoogle Scholar - Thompson, M. M., Eller, R. C., Radlinski, W. A., & Speert, J. L. (Eds.). (1996).
*Manual of photogrammetry*(3rd ed.). Bethesda: ASPRS.Google Scholar - Torr, P. H. S., & Zisserman, A. (1997). Robust parameterization and computation of the trifocal tensor.
*Image and Vision Computing*,*15*, 591–605.CrossRefGoogle Scholar - Trager, M., Hebert, M., & Ponce, J. (2015). The joint image handbook. In
*Proceedings of the IEEE international conference on computer vision*, (pp. 909–917).Google Scholar - Triggs, B. (1995). Matching constraints and the joint image. In
*ICCV*.Google Scholar - Veblen, O., & Young, J. (1910).
*Projective geometry*. Boston: The Athenaeum Press.zbMATHGoogle Scholar - Weng, J., Huang, T. S., & Ahuja, N. (1992). Motion and structure from line correspondences: Closed-form solution, uniqueness, and optimization.
*IEEE Transactions on Pattern Analysis and Machine Intelligence*,*14*(3), 318–336.CrossRefGoogle Scholar