International Journal of Computer Vision

, Volume 117, Issue 2, pp 159–172 | Cite as

A Logarithmic Image Prior for Blind Deconvolution

Article

Abstract

Blind Deconvolution consists in the estimation of a sharp image and a blur kernel from an observed blurry image. Because the blur model admits several solutions it is necessary to devise an image prior that favors the true blur kernel and sharp image. Many successful image priors enforce the sparsity of the sharp image gradients. Ideally the \(L_0\) “norm” is the best choice for promoting sparsity, but because it is computationally intractable, some methods have used a logarithmic approximation. In this work we also study a logarithmic image prior. We show empirically how well the prior suits the blind deconvolution problem. Our analysis confirms experimentally the hypothesis that a prior should not necessarily model natural image statistics to correctly estimate the blur kernel. Furthermore, we show that a simple Maximum a Posteriori formulation is enough to achieve state of the art results. To minimize such formulation we devise two iterative minimization algorithms that cope with the non-convexity of the logarithmic prior: one obtained via the primal-dual approach and one via majorization-minimization.

Keywords

Blind deconvolution Majorization–minimization Primal-dual Image prior Total variation Logarithmic prior 

References

  1. Babacan, S. D., Molina, R., Do, M. N., & Katsaggelos, A. K. (2012). Bayesian blind deconvolution with general sparse image priors. In ECCV. Firenze: Springer.Google Scholar
  2. Burger, M., & Lucka, F. (2014). Maximum-a-posteriori estimates in linear inverse problems with log-concave priors are proper bayes estimators. Inverse Problems, 30, 114004.MathSciNetCrossRefMATHGoogle Scholar
  3. Candes, E. J., Wakin, M. B., & Boyd, S. (2008). Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.MathSciNetCrossRefMATHGoogle Scholar
  4. Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120–145.MathSciNetCrossRefMATHGoogle Scholar
  5. Chan, T., & Wong, C. K. (1998). Total variation blind deconvolution. IEEE Transactions on Image Processing, 7(3), 370–375.CrossRefGoogle Scholar
  6. Chaudhuri, S., Velmurugan, R., & Rameshan, R. M. (2014). Blind image deconvolution. Cham: Springer.CrossRefMATHGoogle Scholar
  7. Cho, S., & Lee, S. (2009). Fast motion deblurring. ACM Transactions on Graphics, 28(5), 1–8.CrossRefGoogle Scholar
  8. Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T. (2006). Removing camera shake from a single photograph. ACM Transactions on Graphics, 25(3), 787–794.CrossRefGoogle Scholar
  9. Hunter, D., & Lange, K. (2004). A tutorial on mm algorithms. The American Statistician, 58, 30–37.MathSciNetCrossRefGoogle Scholar
  10. Kenig, T., Kam, Z., & Feuer, A. (2010). Blind image deconvolution using machine learning for three-dimensional microscopy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2191–2204. doi:10.1109/TPAMI.2010.45.CrossRefGoogle Scholar
  11. Keuper, M., Schmidt, T., Temerinac-Ott, M., Padeken, J., Heun, P., Ronneberger, O., & Brox, T. (2013). Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (otf). In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2179–2186).Google Scholar
  12. Krishnan, D., Tay, T., & Fergus, R. (2011). Blind deconvolution using a normalized sparsity measure. In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 233–240).Google Scholar
  13. Krishnan, D., Bruna, J., & Fergus, R. (2013). Blind deconvolution with re-weighted sparsity promotion. CoRR arXiv:1311.4029.
  14. Levin, A., Fergus, R., Durand, F., & Freeman, W. (2007). Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics, 26, 70.CrossRefGoogle Scholar
  15. Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2009). Understanding and evaluating blind deconvolution algorithms. In CVPR (pp. 1964–1971). IEEE.Google Scholar
  16. Levin, A., Weiss, Y., Durand, F., & Freeman, W. (2011a). Efficient marginal likelihood optimization in blind deconvolution. In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2657–2664). doi:10.1109/CVPR.2011.5995308.
  17. Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2011b). Understanding blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2354–2367.CrossRefGoogle Scholar
  18. Michaeli, T., & Irani, M. (2014). Blind deblurring using internal patch recurrence. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.) Computer Vision—ECCV 2014. Lecture Notes in Computer Science, vol. 8691 (pp. 783–798). Cham: Springer International Publishing. doi:10.1007/978-3-319-10578-9_51.
  19. Möllenhoff, T., Strekalovskiy, E., Möller, M., & Cremers, D. (2014a). Low rank priors for color image regularization. In Proceedings of 10th International Conference, Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2015 (pp. 126–140). Hong Kong, China, January 13–16, 2015.Google Scholar
  20. Möllenhoff, T., Strekalovskiy, E., Möller, M., & Cremers, D. (2014b). The primal-dual hybrid gradient method for semiconvex splittings. CoRR arXiv:1407.1723.
  21. Ochs, P., Chen, Y., Brox, T., & Pock, T. (2014). ipiano: Inertial proximal algorithm for nonconvex optimization. SIAM Journal on Imaging Sciences, 7(2), 1388–1419.MathSciNetCrossRefMATHGoogle Scholar
  22. Perrone, D., & Favaro, P. (2014). Total variation blind deconvolution: The devil is in the details. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
  23. Perrone, D., Diethelm, R., & Favaro, P. (2014). Blind deconvolution via lower-bounded logarithmic image priors. In Proceedings of 10th International Conference, Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2015 (pp. 112–125). Hong Kong, China, January 13–16, 2015.Google Scholar
  24. Rockafellar, R. (1970). Convex analysis. Princeton, NJ: Princeton University Press.CrossRefMATHGoogle Scholar
  25. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60(1–4), 259–268. doi:10.1016/0167-2789(92)90242-F.MathSciNetCrossRefMATHGoogle Scholar
  26. Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion deblurring from a single image. ACM Transactions on Graphics, 27, 73.Google Scholar
  27. Srivastava, A., Lee, A., Simoncelli, E. P., & Zhu, S. C. (2003). On advances in statistical modeling of natural images. Journal of Mathematical Imaging and Vision, 18, 17–33.MathSciNetCrossRefMATHGoogle Scholar
  28. Strekalovskiy, E., & Cremers, D. (2014). Real-time minimization of the piecewise smooth mumford-shah functional. Proceedings of Computer Vision 13th European Conference ECCV 2014, Zurich, Switzerland, September 6–12, 2014 Part II (pp. 127–141).Google Scholar
  29. Strong, D., & Chan, T. (2003). Edge-preserving and scale-dependent properties of total variation regularization. Inverse Problems, 19(6), S165.Google Scholar
  30. Sun, L., Cho, S., Wang, J., & Hays, J. (2013). Edge-based blur kernel estimation using patch priors. In 2013 IEEE International Conference on Computational Photography (ICCP) (pp. 1–8).Google Scholar
  31. Wipf, D., & Zhang, H. (2013). Analysis of Bayesian blind deconvolution. Energy minimization methods in computer vision and pattern recognition (pp. 40–53). Berlin: Springer.CrossRefGoogle Scholar
  32. Wipf, D., & Zhang, H. (2014). Revisiting bayesian blind deconvolution. Journal of Machine Learning Research, 15, 3595–3634.MathSciNetMATHGoogle Scholar
  33. Xu, L., & Jia, J. (2010). Two-phase kernel estimation for robust motion deblurring. In Proceedings of the 11th European Conference on Computer Vision: Part I ECCV’10 (pp. 157–170). Berlin: Springer.Google Scholar
  34. Xu, L., Zheng, S., & Jia, J. (2013). Unnatural l0 sparse representation for natural image deblurring. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1107–1114).Google Scholar
  35. Zoran, D., Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In Proceedings of the 2011 International Conference on Computer Vision, ICCV ’11 (pp. 479–486). IEEE Computer Society Washington, DC, USA.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations