International Journal of Computer Vision

, Volume 116, Issue 3, pp 213–225 | Cite as

Image Based Geo-localization in the Alps

  • Olivier Saurer
  • Georges Baatz
  • Kevin Köser
  • L’ubor Ladický
  • Marc Pollefeys
Article

Abstract

Given a picture taken somewhere in the world, automatic geo-localization of such an image is an extremely useful task especially for historical and forensic sciences, documentation purposes, organization of the world’s photographs and intelligence applications. While tremendous progress has been made over the last years in visual location recognition within a single city, localization in natural environments is much more difficult, since vegetation, illumination, seasonal changes make appearance-only approaches impractical. In this work, we target mountainous terrain and use digital elevation models to extract representations for fast visual database lookup. We propose an automated approach for very large scale visual localization that can efficiently exploit visual information (contours) and geometric constraints (consistent orientation) at the same time. We validate the system at the scale of Switzerland (40,000 \(\hbox {km}^2\)) using over 1000 landscape query images with ground truth GPS position.

Keywords

Geo-localization Localization Camera calibration  Computer vision  

References

  1. Baatz, G., Köser, K., Chen, D., Grzeszczuk, R., & Pollefeys, M. (2012). Leveraging 3d city models for rotation invariant place-of-interest recognition. International Journal of Computer Vision, 96, 315–334. Special Issue on Mobile Vision.CrossRefGoogle Scholar
  2. Baatz, G., Saurer, O., Köser, K., & Pollefeys, M. (2012). Large scale visual geo-localization of images in mountainous terrain. In Proceedings of European Conference on Computer Vision (ECCV) (pp. 517–530).Google Scholar
  3. Baboud, L., Cadík, M., Eisemann, E., & Seidel, H.-P. (2011). Automatic photo-to-terrain alignment for the annotation of mountain pictures. In Proceedings of Computer Vision and Pattern Recognition (CVPR) (pp. 41–48).Google Scholar
  4. Bansal, M., & Daniilidis, K. (2014). Geometric urban geo-localization. In Proceedings of Computer Vision and Pattern Recognition (CVPR) (pp. 3978–3985).Google Scholar
  5. Bazin, J.-C., Kweon, I., Demonceaux, C., & Vasseur, P. (2009). Dynamic programming and skyline extraction in catadioptric infrared images. In Proceedings of International Conference on Robotics and Automation (ICRA) (pp. 409–416).Google Scholar
  6. Blake, A., Rother, C., Brown, M., Perez, P., & Torr, P. (2004). Interactive image segmentation using an adaptive gmmrf model. In Proceedings of European Conference on Computer Vision (ECCV) (pp. 428–441).Google Scholar
  7. Brown, M., & Lowe, D. G. (2007). Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 74, 59–73.CrossRefGoogle Scholar
  8. Chen, D., Baatz, G., Köser, K., Tsai, S., Vedantham, R., Pylvanainen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., Girod, B., & Grzeszczuk, R. (2011). City-scale landmark identification on mobile devices. In Proceedings of Computer Vision and Pattern Recognition (CVPR).Google Scholar
  9. Comaniciu, D., Meer, P., & Member, S. (2002). Mean shift: A robust approach toward feature space analysis. Transactions on Pattern Analysis and Machine Intelligence, 24, 603–619.CrossRefGoogle Scholar
  10. Cozman, F. (1997). Decision Making Based on Convex Sets of Probability Distributions: Quasi-Bayesian Networks and Outdoor Visual Position Estimation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  11. Cozman, F., & Krotkov, E. (1996). Position estimation from outdoor visual landmarks for teleoperation of lunar rovers. In WACV ’96 (pp. 156–161).Google Scholar
  12. Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28, 337–407.MathSciNetCrossRefMATHGoogle Scholar
  13. Hays, J., & Efros, A. A. (2008). im2gps: estimating geographic information from a single image. In Proceedings of Computer Vision and Pattern Recognition (CVPR).Google Scholar
  14. Hussain, S. ul., & Triggs, B. (2012). Visual recognition using local quantized patterns. In Proceedings of European Conference on Computer Vision (ECCV).Google Scholar
  15. Kolmogorov, V., & Boykov, Y. (2005). What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In Proceedings of International Conference on Computer Vision (ICCV) (pp. 564–571). Washington: DC, USA.Google Scholar
  16. Ladicky, L., Russell, C., Kohli, P., & Torr, P. (2014). Associative hierarchical random fields. Transactions on Pattern Analysis and Machine Intelligence, 36(6), 1056–1077.CrossRefGoogle Scholar
  17. Ladicky, L., Zeisl, B., & Pollefeys, M. (2014) Discriminatively trained dense surface normal estimation. In Proceedings of European Conference on Computer Vision (ECCV).Google Scholar
  18. Lalonde, J.-F., Narasimhan, S. G., & Efros, A. A. (2010). What do the sun and the sky tell us about the camera? International Journal on Computer Vision, 88(1), 24–51.CrossRefGoogle Scholar
  19. Li, Y., Snavely, N., & Huttenlocher, D. P. (2010). Location recognition using prioritized feature matching. In Proceedings of European Conference on Computer Vision (ECCV) (pp. 791–804).Google Scholar
  20. Lie, W.-N., Lin, T. C.-I., Lin, T.-C., & Hung, K.-S. (2005). A robust dynamic programming algorithm to extract skyline in images for navigation. Pattern Recognition Letters, 26(2), 221–230.CrossRefGoogle Scholar
  21. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRefGoogle Scholar
  22. Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). Contour and texture analysis for image segmentation. International Journal of Computer Vision, 43(1), 7–27.Google Scholar
  23. Manay, S., Cremers, D., Hong, B.-W., Yezzi, A., & Soatto, S. (2006). Integral invariants for shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1602–1618.Google Scholar
  24. Naval, P. C., Mukunoki, M., Minoh, M., & Ikeda, K. (1997). Estimating camera position and orientation from geographical map and mountain image. In 38th Pattern Sensing Group Research Meeting, Society of Instrument and Control Engineers (pp. 9–16).Google Scholar
  25. Nistér, D., & Stewénius, H. (2006). Scalable recognition with a vocabulary tree. In Proceedings of Computer Vision and Pattern Recognition (CVPR) (pp. 2161–2168).Google Scholar
  26. Ramalingam, S., Bouaziz, S., & Sturm, P. (2011). Pose estimation using both points and lines for geo-localization. In Proceedings of International Conference on Robotics and Automation (ICRA) (pp. 4716–4723).Google Scholar
  27. Ramalingam, S., Bouaziz, S., & Sturm, P., & Brand, M. (2010). Skyline2gps: Localization in urban canyons using omni-skylines. In IROS 2010 (pp. 3816–3823).Google Scholar
  28. Schindler, G., Brown, M., & Szeliski, R. (2007). City-scale location recognition. In Proceedings of Computer Vision and Pattern Recognition (CVPR) (pp. 1–7).Google Scholar
  29. Shechtman, E., & Irani, M. (2007). Matching local self-similarities across images and videos. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
  30. Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In Proceedings of European Conference on Computer Vision (ECCV) (pp. 1–15).Google Scholar
  31. Sivic, J., & Zisserman, A. (2003) Video Google: A text retrieval approach to object matching in videos. In Proceedings of International Conference on Computer Vision (ICCV) (pp. 1470–1477).Google Scholar
  32. Stein, F., & Medioni, G. (1995). Map-based localization using the panoramic horizon. Transaction on Robotics and Automation, 11(6), 892–896.CrossRefGoogle Scholar
  33. Talluri, R., & Aggarwal, J. (1992). Position estimation for an autonomous mobile robot in an outdoor environment. Transaction on Robotics and Automation, 8(5), 573–584.CrossRefGoogle Scholar
  34. Taneja, A., Ballan, L., & Pollefeys, M. (2012). Registration of spherical panoramic images with cadastral 3d models. In 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT) (pp. 479–486).Google Scholar
  35. Thompson, W. B., Henderson, T. C., Colvin, T. L., Dick, L. B., & Valiquette, C. M. (1993). Vision-based localization. In Image Understanding Workshop (pp. 491–498).Google Scholar
  36. Vasilevskiy, A., & Siddiqi, K. (2002). Flux maximizing geometric flows. In Transactions on Pattern Analysis and Machine Intelligence (PAMI) (pp. 1565–1578).Google Scholar
  37. Woo, J., Son, K., Li, T., Kim, G. S., & Kweon, I.-S. (2007). Vision-based uav navigation in mountain area. In MVA (pp. 236–239).Google Scholar
  38. Yang, M., Kpalma, K., & Ronsin, J. (2008). A survey of shape feature extraction techniques. In P.-Y. Yin (Ed.), Pattern recognition (pp. 43–90).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Olivier Saurer
    • 1
  • Georges Baatz
    • 2
  • Kevin Köser
    • 3
  • L’ubor Ladický
    • 1
  • Marc Pollefeys
    • 1
  1. 1.Computer Vision and Geometry GroupETH ZürichZurichSwitzerland
  2. 2.Google Inc.ZurichSwitzerland
  3. 3.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations