Advertisement

International Journal of Computer Vision

, Volume 112, Issue 1, pp 115–129 | Cite as

Tractable Algorithms for Robust Model Estimation

  • Olof Enqvist
  • Erik Ask
  • Fredrik Kahl
  • Kalle Åström
Article

Abstract

What is the computational complexity of geometric model estimation in the presence of noise and outliers? We show that the number of outliers can be minimized in polynomial time with respect to the number of measurements, although exponential in the model dimension. Moreover, for a large class of problems, we prove that the statistically more desirable truncated \(L_2\)-norm can be optimized with the same complexity. In a similar vein, it is also shown how to transform a multi-model estimation problem into a purely combinatorial one—with worst-case complexity that is polynomial in the number of measurements but exponential in the number of models. We apply our framework to a series of hard fitting problems. It gives a practical method for simultaneously dealing with measurement noise and large amounts of outliers in the estimation of low-dimensional models. Experimental results and a comparison to random sampling techniques are presented for the applications rigid registration, triangulation and stitching.

Keywords

Outliers Geometry Optimization  3D reconstruction Image registration 

References

  1. Ask, E., Kuang, Y., & Åström, K. (2012). Exploiting p-fold symmetries for faster polynomial equation solving. In: International Conference on Pattern Recognition. Tsukuba, Japan.Google Scholar
  2. Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear programming: Theory and algorithms. New York: Wiley.zbMATHGoogle Scholar
  3. Bazin, J.-C., Seo, Y., Demonceaux, C., Vasseur, P., Ikeuchi, K., Kweon, I., et al. (2012). Globally optimal line clustering and vanishing point estimation in manhattan world. In: Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA.Google Scholar
  4. Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge, MA: MIT Press.Google Scholar
  5. Breuel, T. M. (2003). Implementation techniques for geometric branch-and-bound matching methods. Computer Vision and Image Understanding, 90(3), 258–294.CrossRefzbMATHGoogle Scholar
  6. Byröd, M., Josephson, K., & Åström, K. (2009). Fast and stable polynomial equation solving and its application to computer vision. International Journal Computer Vision, 84(3), 237–256.CrossRefGoogle Scholar
  7. Cass, T. A. (1999). Polynomial-time geometric matching for object recognition. International Journal Computer Vision, 21(1–2), 37–61.Google Scholar
  8. Chum, O., & Matas, J. (2008). Optimal randomized ransac. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1472–1482.CrossRefGoogle Scholar
  9. Enqvist, O., & Kahl, F. (2008). Robust optimal pose estimation. In European Conference on Computer Vision (pp. 141–153). Marseille, France.Google Scholar
  10. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Communications of Association for Computing Machinery, 24, 381–395.CrossRefMathSciNetGoogle Scholar
  11. Hartley, R., & Sturm, P. (1997). Triangulation. Computer Vision and Image Understanding, 68(2), 146–157. Google Scholar
  12. Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (Second ed.). Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  13. Horn, B. K. P., Hilden, H. M., & Negahdaripour, S. (1988). Closed-form solution of absolute orientation using ortonormal matrices. Journal of the Optical Society of America A, 5(7), 1127–1135.CrossRefMathSciNetGoogle Scholar
  14. Johnson, D. S., & Preparata, F. P. (1978). The densest hemisphere problem. Theoretical Computer Science, 6(1), 93–107.CrossRefzbMATHMathSciNetGoogle Scholar
  15. Kahl, F. (2001). Geometry and critical configurations of multiple views. PhD thesis, Lund Institute of Technology, Sweden.Google Scholar
  16. Kahl, F., & Hartley, R. (2008). Multiple view geometry under the \(L_\infty \)-norm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(9), 1603–1617.CrossRefGoogle Scholar
  17. Ke, Q., & Kanade, T. (2007). Quasiconvex optimization for robust geometric reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10), 1834–1847.CrossRefGoogle Scholar
  18. Lebeda, K., Matas, J., & Chum, O. (2012). Fixing the locally optimized ransac. In: British Machine Vision Conference. Guilford, UK.Google Scholar
  19. Li, H. (2007). A practical algorithm for \(L_\infty \) triangulation with outliers. In:Conference on Computer Vision and Pattern Recognition. Minneapolis, USA.Google Scholar
  20. Li, H. (2009). Consensus set maximization with guaranteed global optimality for robust geometry estimation. In: International Conference on Computer Vision. Kyoto, Japan.Google Scholar
  21. Mittal, S., Anand, S., & Meer, P. (2012). Generalized projection based m-estimator: Theory and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(12), 2351–2364.CrossRefGoogle Scholar
  22. Olsson, C., Enqvist, O., & Kahl, F. (2008). A polynomial-time bound for matching and registration with outliers. In: Conference of Computer Vision and Pattern Recognition. Anchorage, USA.Google Scholar
  23. Olsson, C., Eriksson, A., & Hartley, R. (2010). Outlier removal using duality. In: Conference on Computer Vision and Pattern Recognition. San Francisco, USA.Google Scholar
  24. Sim, K., & Hartley, R. (2006). Removing outliers using the \(L_\infty \)-norm. In: Conference on Computer Vision and Pattern Recognition (pp. 485–492). New York City, USA.Google Scholar
  25. Toldo, R., & Fusiello, A. (2008). Robust multiple structures estimation with J-linkage. In: European Conference on Computer Vision. Marseille, France.Google Scholar
  26. Tordoff, B., & Murray, D. W. (2002). Guided sampling and consensus for motion estimation. In: European Conference on Computer Vision (pp. 82–98). Copenhagen, Denmark.Google Scholar
  27. Wills, J., Agarwal, S., & Belongie, S. (2006). A feature-based approach for dense segmentation and estimation of large disparity motion. International Journal Computer Vision, 68(2), 125–143.CrossRefGoogle Scholar
  28. Yu, J., Eriksson, A., Chin, T.-J., & Suter, D. (2011). An adversarial optimization approach to efficient outlier removal. In: International Conference on Computer Vision. Barcelona, Spain.Google Scholar
  29. Zuliani, M., Kenney, C. S., & Manjunath, B. S. (2005). The multi-RANSAC algorithm and its application to detect planar homographies. In: International Conference on Image Processing. Genoa, Italy.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Olof Enqvist
    • 1
  • Erik Ask
    • 2
  • Fredrik Kahl
    • 1
    • 2
  • Kalle Åström
    • 2
  1. 1.Chalmers University of TechnologyGöteborgSweden
  2. 2.Lund UniversityLundSweden

Personalised recommendations