International Journal of Computer Vision

, Volume 110, Issue 2, pp 222–239

Contrast Preserving Decolorization with Perception-Based Quality Metrics

Article

Abstract

Converting color images into grayscale ones suffer from information loss. In the meantime, it is one fundamental tool indispensable for single channel image processing, digital printing, and monotone e-ink display. In this paper, we propose an optimization framework aiming at maximally preserving color contrast. Our main contribution is threefold. First, we employ a bimodal objective function to alleviate the restrictive order constraint for color mapping. Second, we develop an efficient solver that allows for automatic selection of suitable grayscales based on global contrast constraints. Third, we advocate a perceptual-based metric to measure contrast loss, as well as content preservation, in the produced grayscale images. It is among the first attempts in this field to quantitatively evaluate decolorization results.

Keywords

Decolorization Color2gray Conversion Contrast preservation Perceptual-based Quality metrics 

Supplementary material

11263_2014_732_MOESM1_ESM.pdf (4.9 mb)
Supplementary material 1 (pdf 5008 KB)

References

  1. Achanta, R., Hemami, S. S., Estrada, F. J., & Susstrunk, S. (2009). Frequency-tuned salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Google Scholar
  2. Ahn, J. H., Kuk, J. G., & Cho, N. I. (2010). A color to grayscale conversion considering local and global contrast. In Asian Conference on Computer Vision (ACCV).Google Scholar
  3. Ancuti, C. O., Ancuti, C., & Bekaert, P. (2011). Enhancing by saliency-guided decolorization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Google Scholar
  4. Bala, R., & Braun, K. (2004). Color-to-grayscale conversion to maintain discriminability. In Proceedings of SPIE, pp. 196–202.Google Scholar
  5. Bala, R., & Eschbach, R. (2004). Spatial color-to-grayscale transform preserving chrominance edge information. In Color Imaging Conference.Google Scholar
  6. Cadík, M. (2008). Perceptual evaluation of color-to-grayscale image conversions. Computer Graphics Forum, pp. 1745–1754.Google Scholar
  7. Chen, H. C. & Wang, S. J. (2004). The use of visible color difference in the quantitative evaluation of color image segmentation. In International conference on acoustics, speech, and signal processing (ICASSP), vol. 3, pp. 593–596.Google Scholar
  8. Corney, D., Haynes, J. D., Rees, G., & Lotto, R. B. (2009). The brightness of colour. PLoS ONE, 4(3), e5091.CrossRefGoogle Scholar
  9. Fairchild, M. D. (2005). Color appearance models. Chicheste: Wiley.Google Scholar
  10. Gooch, Amy Ashurst, Olsen, Sven C., Tumblin, Jack, & Gooch, Bruce. (2005). Color2gray: Salience-preserving color removal. ACM Transactions on Graphics (TOG), 24(3), 634–639.CrossRefGoogle Scholar
  11. Grundland, Mark, & Dodgson, Neil A. (2007). Decolorize: Fast, contrast enhancing, color to grayscale conversion. Pattern Recognition, 40(11), 2891–2896.CrossRefGoogle Scholar
  12. Hunter, R. S. (1958). Photoelectric color difference meter. Journal of the Optical Society of America, 48(12), 985–993.CrossRefGoogle Scholar
  13. Kim, Y., Jang, C., Demouth, J., & Lee, S. (2009). Robust color-to-gray via nonlinear global mapping. ACM Transactions on Graphics (TOG), 28 (5)Google Scholar
  14. Lotto, R. B., & Purves, D. (2002). A rationale for the structure of color space. Trends in Neurosciences, 25(2), 84–89.CrossRefGoogle Scholar
  15. Lu, C., Xu, L., & Jia, J. (2012). Contrast preserving decolorization. In International Conference on Computational Photography (ICCP).Google Scholar
  16. Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In International Conference on Computer Vision (ICCV).Google Scholar
  17. Nayatani, Y. (1997). Simple estimation methods for the helmholtz kohlrausch effect. Color Research and Application, 24, 385–401.CrossRefGoogle Scholar
  18. Nelsen, R. B. (2001). Kendall tau metric. Berlin: Springer.Google Scholar
  19. Neumann, L., Cadík, M., & Nemcsics, A. (2007). An efficient perception-based adaptive color to gray transformation. Computational Aesthetics Google Scholar
  20. Ozgen, E. (2004). Language, learning, and color perception. Current Directions in Psychological Science, 13(3), 95–98.CrossRefGoogle Scholar
  21. Rasche, K., Geist, R., & Westall, J. (2005). Detail preserving reproduction of color images for monochromats and dichromats. IEEE Computer Graphics and Applications, pp. 22–30.Google Scholar
  22. Reber, A. S. (1985). The Penguin dictionary of psychology. London: Penguin Books.Google Scholar
  23. Sharma, G., & Bala, R. (2002). Digital Color Imaging Handbook. Boca Raton: CRC Press.CrossRefGoogle Scholar
  24. Smith, K., Landes, P. E., Thollot, J., & Myszkowski, K. (2008). Apparent greyscale: A simple and fast conversion to perceptually accurate images and video. Computer Graphics Forum, 27(2), 193–200.CrossRefGoogle Scholar
  25. Song, M., Tao, D., Chen, C., Li, X., & Chen, C. W. (2010). Color to gray: Visual cue preservation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 32(9), 1537–1552.CrossRefGoogle Scholar
  26. Wong, B. (2010). Points of view: Color coding. Nature Methods, 7(8), 573. Google Scholar
  27. Wyszecki, G., & Stiles, W. S. (2000). Color science: Concepts and methods. Quantitative data and formulas. New York: Wiley-Interscience.Google Scholar
  28. Zhou, K., Mo, L., Kay, P., Kwok, V., Ip, T. N., & Tan, L. H. (2010). Newly trained lexical categories produce lateralized categorical perception of color. In Proceedings of the National Academy of Sciences.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.The Department of Computer Science and EngineeringThe Chinese University of Hong KongShatinHong Kong
  2. 2.Lenovo Research and TechnologyHong KongChina

Personalised recommendations