International Journal of Computer Vision

, Volume 110, Issue 2, pp 202–221 | Cite as

Exposing Region Splicing Forgeries with Blind Local Noise Estimation

Article

Abstract

Region splicing is a simple and common digital image tampering operation, where a chosen region from one image is composited into another image with the aim to modify the original image’s content. In this paper, we describe an effective method to expose region splicing by revealing inconsistencies in local noise levels, based on the fact that images of different origins may have different noise characteristics introduced by the sensors or post-processing steps. The basis of our region splicing detection method is a new blind noise estimation algorithm, which exploits a particular regular property of the kurtosis of nature images in band-pass domains and the relationship between noise characteristics and kurtosis. The estimation of noise statistics is formulated as an optimization problem with closed-form solution, and is further extended to an efficient estimation method of local noise statistics. We demonstrate the efficacy of our blind global and local noise estimation methods on natural images, and evaluate the performances and robustness of the region splicing detection method on forged images.

Keywords

Blind local noise estimation Natural image statistics  Digital image forensics 

References

  1. Andrews, D. F., & Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society, Series B, 36(1), 99–102.MathSciNetMATHGoogle Scholar
  2. Bayram, S., Avcibas, I., Sankur, B., & Memon, N. D. (2006). Image manipulation detection. Journal of Electronic Imaging, 15(4), 1–17.CrossRefGoogle Scholar
  3. Benedict, T. R., & Soong, T. T. (1967). The joint estimation of signal and noise from the sum envelope. IEEE Transactions on Information Theory, 13(3), 447–454.Google Scholar
  4. Bethge, M. (2006). Factorial coding of natural images: How effective are linear models in removing higher-order dependencies? The Journal of the Optical Society of America A, 23(6), 1253–1268.MathSciNetCrossRefGoogle Scholar
  5. Bilcu, R. C., & Vehvilainen, M. (2005). A new method for noise estimation in images. In IEEE EURASIP International workshop on nonlinear signal and image processing.Google Scholar
  6. Burt, P., & Adelson, E. (1981). The Laplacian pyramid as a compact image code. IEEE Transactions on Communication, 31(4), 532–540.CrossRefGoogle Scholar
  7. Cardoso, J. F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11(1), 157–192.MathSciNetCrossRefGoogle Scholar
  8. Chen, M., Fridrich, J. J., Lukás, J., & Goljan, M. (2007). Imaging sensor noise as digital X-ray for revealing forgeries. In Information hiding (pp. 342–358).Google Scholar
  9. Chen, W., Shi, Y. Q., & Su, W. (2007). Image splicing detection using 2-D phase congruency and statistical moments of characteristic function. In Society of photo-optical instrumentation engineers (SPIE) conference series (Vol. 6505). doi:10.1117/12.704321.
  10. Chen, M., Fridrich, J., Goljan, M., & Lukas, J. (2008). Determining image origin and integrity using sensor noise. IEEE Transactions on Information Forensics and Security, 3(1), 74–90. doi:10.1109/TIFS.2007.916285.CrossRefGoogle Scholar
  11. Crow, F. (1984). Summed-area tables for texture mapping. In ACM SIGGRAPH.Google Scholar
  12. Danielyan, A., & Foi, A. (2009). Noise variance estimation in nonlocal transform domain. In International workshop on local and non-local approximation in image processing.Google Scholar
  13. Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613–627.MathSciNetCrossRefMATHGoogle Scholar
  14. Farebrother, R. W. (1990). The cumulants of the logarithm of a gamma variable the cumulants of the logarithm of a gamma variable. Journal of Statistical Computation and Simulation, 36(4), 243–245.MathSciNetCrossRefGoogle Scholar
  15. Farid, H. (2009). Photo fakery and forensics. Advances in Computers, 77, 1–55.CrossRefGoogle Scholar
  16. Feller, W. (1968). An introduction to probability theory and its applications. New York: Wiley.MATHGoogle Scholar
  17. Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. The Journal of the Optical Society of America A, 4(12), 2379–2394.CrossRefGoogle Scholar
  18. Filler, T., Fridrich, J. J., & Goljan, M. (2008). Using sensor pattern noise for camera model identification. In IEEE International conference on image processing. San Diego, CA.Google Scholar
  19. Foi, A., Alenius, S., Katkovnik, V., & Egiazarian, K. (2007). Noise measurement for raw-data of digital imaging sensors by automatic segmentation of non-uniform targets. IEEE Sensors Journal, 7(10), 1456–1461.CrossRefGoogle Scholar
  20. For̈stner, W. (1998). Image preprocessing for feature extraction in digital intensity, color and range images. In: Springer lecture notes on Earth siences.Google Scholar
  21. Franzen, R. (1999). Kodak lossless true color image suite. http://r0k.us/graphics/kodak. Accessed 17 Dec 2013.
  22. Fu, D., Shi, Y. Q., & Su, W. (2007). Image splicing detection using 2-d phase congruency and statistical moments of characteristic function. In Proceedings of SPIE security, steganography, and watermarking of multimedia contents IX.Google Scholar
  23. Garry, M., & Gerrie, M. P. (2005). When photographs create false memories. Current Directions in Psychological Science, 14, 326–330.CrossRefGoogle Scholar
  24. He, J., Lin, Z., Wang, L., & Tang., X. (2006). Detecting doctored JPEG images via DCT coefficient analysis. In ECCV.Google Scholar
  25. Hsu, Y. F., & Chang, S. F. (2006). Detecting image splicing using geometry invariants and camera characteristics consistency. In IEEE International Conference on Multimedia and Expo.Google Scholar
  26. Hsu, Y. F., & Chang, S. F. (2007). Image splicing detection using camera response function consistency and automatic segmentation. In IEEE International Conference on Multimedia and Expo.Google Scholar
  27. Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.CrossRefGoogle Scholar
  28. Konstantinides, G. S. Y. K., & Natarajan, B. K. (1997). Noise estimation and filtering using block-based singular value decomposition. IEEE Transactions on Image Processing, 6(3), 479–483.CrossRefGoogle Scholar
  29. Lin, Z., Wang, R., Tang, X., & Shum, H. (2005). Detecting doctored images using camera response normality and consistency. In CVPR.Google Scholar
  30. Lin, Z., He, J., Tang, X., & Tang, C. (2009). Fast, automatic and fine-grained tampered JPEG images detection via DCT coefficient analysis. Pattern Recognition, 42(11), 2492–2501.CrossRefMATHGoogle Scholar
  31. Liu, C., Szeliski, R., Kang, S. B., Zitnick, C. L., & Freeman, W. T. (2008). Automatic estimation and removal of noise from a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 299–314. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1176.Google Scholar
  32. Liu, X., Tanaka, M., Okutomi, M. (2012). Noise level estimation using weak textured patches of a single noisy image. In IEEE International conference on image processing.Google Scholar
  33. Lukas, J., Fridrich, J., & Goljan, M. (2006). Detecting digital image forgeries using sensor pattern noise. In Proceedings of SPIE security, steganography, and watermarking of multimedia contents VIII.Google Scholar
  34. Lukás, J., Fridrich, J. J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205–214.CrossRefGoogle Scholar
  35. Lyu, S., & Simoncelli, E. P. (2009). Nonlinear extraction of ’independent components’ of natural images using radial Gaussianization. Neural Computation, 18(6), 1–35.MathSciNetGoogle Scholar
  36. Mahdian, B., & Saic, S. (2009). Using noise inconsistencies for blind image forensics. Image and Vision Computing, 27(10), 1497–1503.CrossRefGoogle Scholar
  37. Matzner, R., & Engleberger, F. (1994). An SNR estimation algorithm using fourth-order moments. In IEEE International symposium on information theory.Google Scholar
  38. Meer, P., Jolion, J., & Rosenfeld, A. (1990). A fast parallel algorithm for blind estimation of noise variance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2), 216–223.CrossRefGoogle Scholar
  39. Nakamura, J. (Ed.). (2006). Image sensors and signal processing for digital still cameras. Boca Raton: Taylor and Francis.Google Scholar
  40. Ng, T. T., & Chang, S. F. (2004). A model for image splicing. In IEEE International conference on image processing (ICIP). Singapore.Google Scholar
  41. Olsen, S. I. (1993). Estimation of noise in images: An evaluation. Computer Vision Graphics Image Process. Graphic Models and Image Process, 55(4), 319–323.MathSciNetCrossRefGoogle Scholar
  42. Pan, X., Zhang, X., & Lyu, S. (2011). Exposing image forgery with blind noise estimation. In The 13th ACM workshop on multimedia and security. Buffalo, NY.Google Scholar
  43. Pan, X., Zhang, X., & Lyu, S. (2012). Blind local noise estimation for medical images reconstructed from rapid acquisition. In SPIE Symposium on medical imaging. San Diego, CA.Google Scholar
  44. Pan, X., Zhang, X., & Lyu, S. (2012). Detecting splicing in digital audios using local noise level estimation. In IEEE International conference on acoustics, speech, and signal processing (ICASSP). Kyoto, Japan.Google Scholar
  45. Pan, X., Zhang, X., & Lyu, S. (2012). Exposing image splicing with inconsistent local noise variances. In IEEE International conference on computational photography. Seattle, WA.Google Scholar
  46. Pauluzzi, D. R., & Beaulieu, N. C. (2000). A comparison of SNR estimation techniques for the AGWN channel. IEEE Transactions on Communications, 48(10), 1681–1691.Google Scholar
  47. Ponomarenko, N. N., Lukin, V. V., Abramov, S. K., Egiazarian, K. O., & Astola, J. T. (2003). Blind evaluation of additive noise variance in textured images by nonlinear processing of block DCT coefficients. In SPIE Proceedings (Vol. 5014, pp. 178–189).Google Scholar
  48. Popescu, A., & Farid, H. (2004). Statistical tools for digital forensics. In 6th International workshop on information hiding. Toronto, Canada.Google Scholar
  49. Portilla, J. (2004). Full blind denoising through noise covariance estimation using Gaussian scale mixtures in the wavelet domain. In International conference on image processing. doi:10.1109/ICIP.2004.1419524.
  50. Portilla, J., Strela, V., Wainwright, M. J., & Simoncelli, E. P. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11), 1338–1351.MathSciNetCrossRefMATHGoogle Scholar
  51. Qu, Z., Qiu, G., & Huang, J. (2009). Detect digital image splicing with visual cues. In: S. Katzenbeisser, & A. R. Sadeghi (Eds.) International workshop on information hiding (pp. 247–261).Google Scholar
  52. Rank, K., Lendl, M., & Unbehauen, R. (1999). Estimation of image noise variance. In IEE Proceedings. Vision, Image and Signal Processing (Vol. 146, pp. 80–84).Google Scholar
  53. Rudin, L., Lions, P., & Osher, S. (2003). Multiplicative denoising and deblurring: Theory and algorithms. In S. Osher & N. Paragios (Eds.), Geometric level set methods in imaging, vision, and graphics. New York: Springer.Google Scholar
  54. Sacchi, D. L. M., Agnoli, F., & Loftus, E. F. (2007). Changing history: Doctored photographs affect memory for past public events. Applied Cognitive Psychology, 21, 1005–1022.CrossRefGoogle Scholar
  55. Schaefer, G., & Stich, M. (2004). UCID—an uncompressed colour image database. In Proc. SPIE, storage and retrieval methods and applications for multimedia.Google Scholar
  56. Schmidt, U., Schelten, K., & Roth, S. (2011). Bayesian deblurring with integrated noise estimation. In IEEE International conference on computer vision. Colorado Springs, CO.Google Scholar
  57. Sencar, H. T., & Memon, N. (Eds.). (2012). Digital image forensics: There is more to a picture than meets the eye. Dordrecht: Springer.Google Scholar
  58. Serra, J. (1988). Image analysis and mathematical morphology: Theoretical advances. Image Analysis and Mathematical Morphology. London: Academic Press.Google Scholar
  59. Shi, Y. Q., Chen, C., & Chen, W. (2007). A natural image model approach to splicing detection. In Proceedings of the 9th workshop on multimedia and security (pp. 51–62). New York, NY: ACM. doi:10.1145/1288869.1288878.
  60. Simoncelli, E. P., & Freeman, W. T. (1995). The steerable pyramid: A flexible architecture for multi-scale derivative computation. In IEEE Second international conference on image processing.Google Scholar
  61. Simoncelli, E. P., & Olshausen, B. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216. doi:10.1146/annurev.neuro.24.1.1193.CrossRefGoogle Scholar
  62. Stefano, A., White, P., & Collis, W. (2004). Training methods for image noise level estimation on wavelet components. EURASIP Journal on Applied Signal Processing, 16, 2400–2407.CrossRefGoogle Scholar
  63. Tai, S. C., & Yang, S. M. (2008). A fast method for image noise estimation using Laplacian operator and adaptive edge detection. In International symposium on communications, control and signal processing.Google Scholar
  64. van Hateren, J. H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society B: Biological Sciences, 265(1394), 359–366.Google Scholar
  65. Viola, P., & Jones, M. (2002). Robust real-time object detection. International Journal of Computer Vision, 57(2), 137–154.Google Scholar
  66. Wainwright, M. J., & Simoncelli, E. P. (2000). Scale mixtures of Gaussians and the statistics of natural images. Cambridge, MA: MIT Press. Google Scholar
  67. Wang, W., Dong, J., & Tan, T. (2009). Effective image splicing detection based on image chroma. In IEEE International conference on image processing.Google Scholar
  68. Withagen, P., Groen, F., & Schutte, K. (2005). CCD characterization for a range of color cameras. In Instrumentation and measurement technology conference, 2005 (Vol 3, pp. 2232–2235). doi:10.1109/IMTC.2005.1604573.
  69. Zoran, D., & Weiss, Y. (2009). Scale invariance and noise in nature image. In IEEE International conference on computer vision. Kyoto, Japan.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity at Albany, State University of New YorkAlbanyUSA

Personalised recommendations