International Journal of Computer Vision

, Volume 107, Issue 1, pp 75–97 | Cite as

A Klein-Bottle-Based Dictionary for Texture Representation

Article

Abstract

A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small \(n\times n\) high-contrast patches from natural images in gray-scale accumulate with high density around a surface \(\fancyscript{K}\subset {\mathbb {R}}^{n^2}\) with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12, 2008), we present in this paper a novel framework for the estimation and representation of distributions around \(\fancyscript{K}\), of patches from texture images. More specifically, we show that most \(n\times n\) patches from a given image can be projected onto \(\fancyscript{K}\) yielding a finite sample \(S\subset \fancyscript{K}\), whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from \(S\). We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.

Keywords

Texture representation Texture classification Klein bottle Fourier coefficients Patch distribution Density estimation 

References

  1. Aherne, F. J., Thacker, N. A., & Rockett, P. I. (1998). The bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika, 34(4), 363–368.MATHMathSciNetGoogle Scholar
  2. Bell, A. J., & Sejnowski, T. J. (1997). The “independent components” of natural scenes are edge filters. Vision Research, 37(23), 3327.CrossRefGoogle Scholar
  3. Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is “nearest neighbor” meaningful? Database Theory-ICDT’99 (pp. 217–235).Google Scholar
  4. Broadhurst, R. E. (2005). Statistical estimation of histogram variation for texture classification. In Proc. Intl. Workshop on texture analysis and synthesis. (pp. 25–30).Google Scholar
  5. Brodatz, P. (1966). Textures: A photographic album for artists and designers (Vol. 66). New York: Dover.Google Scholar
  6. Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2), 255.CrossRefMATHMathSciNetGoogle Scholar
  7. Carlsson, G., Ishkhanov, T., De Silva, V., & Zomorodian, A. (2008). On the local behavior of spaces of natural images. International Journal of Computer Vision, 76(1), 1–12.CrossRefGoogle Scholar
  8. Crosier, M., & Griffin, L. D. (2010). Using basic image features for texture classification. International Journal of Computer Vision, 88(3), 447–460.CrossRefMathSciNetGoogle Scholar
  9. Dana, K. J., Van Ginneken, B., Nayar, S. K., & Koenderink, J. J. (1999). Reflectance and texture of real-world surfaces. ACM Transactions on Graphics (TOG), 18(1), 1–34.CrossRefGoogle Scholar
  10. De Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011). Persistent cohomology and circular coordinates. Discrete and Computational Geometry, 45(4), 737–759.CrossRefMATHMathSciNetGoogle Scholar
  11. De Wit, T. D., & Floriani, E. (1998). Estimating probability densities from short samples: A parametric maximum likelihood approach. Physical Review E, 58(4), 5115.CrossRefGoogle Scholar
  12. Edelman, A., & Murakami, H. (1995). Polynomial roots from companion matrix eigenvalues. Mathematics of Computation, 64(210), 763–776.CrossRefMATHMathSciNetGoogle Scholar
  13. Franzoni, G. (2012). The klein bottle: Variations on a theme. Notices of the AMS, 59(8), 1094–1099.MathSciNetGoogle Scholar
  14. Lewis, D. (2005). Feature classes for 1D, 2nd order image structure arise from natural image maximum likelihood statistics. Network, 16(2–3), 301–320.Google Scholar
  15. Griffin, L. D. (2007). The second order local-image-structure solid. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1355–1366.CrossRefGoogle Scholar
  16. Harris, C. & Stephens, M. (1988) A combined corner and edge detector. In Proc. of Fourth Alvey Vision Conference. (pp. 147–151).Google Scholar
  17. Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press.MATHGoogle Scholar
  18. Hayman, E., Caputo, B., Fritz, M., & Eklundh, J. O. (2004). On the significance of real-world conditions for material classification. Computer Vision ECCV, 3024, 253–266.Google Scholar
  19. Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148(3), 574–591.Google Scholar
  20. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.Google Scholar
  21. Jurie, F. and Triggs, B. (2005). Creating efficient codebooks for visual recognition. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, IEEE. (Vol. 1, pp. 604–610).Google Scholar
  22. Koenderink, J. J. (1984). The structure of images. Biological Cybernetics, 50(5), 363–370.CrossRefMATHMathSciNetGoogle Scholar
  23. Lazebnik, S., Schmid, C., & Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1265–1278.CrossRefGoogle Scholar
  24. Lee, A. B., Pedersen, K. S., & Mumford, D. (2003). The nonlinear statistics of high-contrast patches in natural images. International Journal of Computer Vision, 54(1), 83–103. Google Scholar
  25. Leung, T., & Malik, J. (2001). Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 43(1), 29–44.CrossRefMATHGoogle Scholar
  26. Moler, C. (1991). Cleve’s corner: Roots-of polynomials, that is. The MathWorks Newsletter, 5(1), 8–9.Google Scholar
  27. Pedersen, Kim S and Lee, Ann B. (2002). Toward a full probability model of edges in natural images. In Computer Vision-ECCV 2002, Springer (pp. 328–342).Google Scholar
  28. Reed, M., & Simon, B. (1972). Methods of modern mathematical physics: Functional analysis (Vol. 1). New York: Academic Press.MATHGoogle Scholar
  29. Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99–121.CrossRefMATHGoogle Scholar
  30. Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). London: Chapman & Hall.CrossRefMATHGoogle Scholar
  31. van Hateren, J. H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. In Proceedings of the Royal Society of London. Series B: Biological Sciences, (Vol. 265(1394) pp. 359–366).Google Scholar
  32. Varma, M. and Ray, D. (2007). Learning the discriminative power-invariance trade-off. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, IEEE. (pp. 1–8).Google Scholar
  33. Varma, M., & Zisserman, A. (2004). Unifying statistical texture classification frameworks. Image and Vision Computing, 22(14), 1175–1183.CrossRefGoogle Scholar
  34. Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. International Journal of Computer Vision, 62(1), 61–81.CrossRefGoogle Scholar
  35. Varma, M., & Zisserman, A. (2009). A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11), 2032–2047.CrossRefGoogle Scholar
  36. Watson, G. S. (1969). Density estimation by orthogonal series. The Annals of Mathematical Statistics, 40(4), 1496–1498.CrossRefMATHGoogle Scholar
  37. Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification. The Journal of Machine Learning Research, 10, 207–244.MATHGoogle Scholar
  38. Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73(2), 213–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations