International Journal of Computer Vision

, Volume 106, Issue 2, pp 192–209 | Cite as

Smoke Detection in Video: An Image Separation Approach

  • Hongda Tian
  • Wanqing Li
  • Lei Wang
  • Philip Ogunbona
Article

Abstract

Existing video-based smoke detection methods often rely on the visual features extracted directly from the original frames. In the case of light smoke, the background is still visible and it deteriorates the quality of the features. This paper presents an approach to separating the smoke component from the background such that visual features can be extracted from the smoke component for reliable smoke detection. Specifically, an image is assumed to be a linear blending of a smoke component and a background image. Given a video frame and its background, the estimation of the blending parameter and the actual smoke component can be formulated as an optimization problem. Three methods based on different models for the smoke component are proposed to solve the optimization problem. Experimental results on synthesized and real video data have shown that the proposed approach can effectively separate the smoke component and the smoke detection performance is significantly improved by using the visual features extracted from the smoke component.

Keywords

Smoke detection Smoke texture  Image separation Sparse representation 

Notes

Acknowledgments

This work was partly supported by Beijing Polymer Sensing Technology Co. Ltd.

References

  1. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRefGoogle Scholar
  2. Almeida, L. B. (2005). Separating a real-life nonlinear image mixture. Journal of Machine Learning Research, 6, 1199–1229.MATHMathSciNetGoogle Scholar
  3. Bai, X., & Sapiro, G. (2009). Geodesic matting: A framework for fast interactive image and video segmentation and matting. International Journal of Computer Vision, 82(2), 113–132.CrossRefGoogle Scholar
  4. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximisation approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.CrossRefGoogle Scholar
  5. Calderara, S., Piccinini, P., & Cucchiara, R. (2011). Vision based smoke detection system using image energy and color information. Machine Vision and Applications, 22(4), 705–719.CrossRefGoogle Scholar
  6. Chen, T., Yin, Y., Huang, S., & Ye, Y. (2006). The smoke detection for early fire-alarming system base on video processing. In Proceedings of international conference on intelligent information hiding and multimedia signal processing (pp. 427–430).Google Scholar
  7. Fadili, M. J., Starck, J. L., Bobin, J., & Moudden, Y. (2010). Image decomposition and separation using sparse representations: An overview. Proceedings of the IEEE, 98(6), 983–994.CrossRefGoogle Scholar
  8. Farid, H., & Adelson, E. H. (1999). Separating reflections and lighting using independent components analysis. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 262–267.Google Scholar
  9. Funaro, M., Oja, E., & Valpola, H. (2003). Independent component analysis for artefact separation in astrophysical images. Neural Networks, 16(3–4), 469–478.CrossRefGoogle Scholar
  10. Gai, K., Shi, Z., & Zhang, C. (2008). Blindly separating mixtures of multiple layers with spatial shifts. In Proceedings of IEEE Computer Society conference on computer vision and pattern recognition (pp. 15–22).Google Scholar
  11. Gonzalez, R. C., & Woods, R. E. (2007). Digital image processing (3rd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  12. Guidara, R., Hosseini, S., & Deville, Y. (2009). Maximum likelihood blind image separation using nonsymmetrical half-plane Markov random fields. IEEE Transactions on Image Processing, 18(11), 2435–2450.CrossRefMathSciNetGoogle Scholar
  13. Guo, L., & Garland, M. (2006). The use of entropy minimization for the solution of blind source separation problems in image analysis. Pattern Recognition, 39(6), 1066–1073.CrossRefMATHGoogle Scholar
  14. He, K., Sun, J., & Tang, X. (2011). Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2341–2353.CrossRefGoogle Scholar
  15. Kolesov, I., Karasev, P., Tannenbaum, A., & Haber, E. (2010). Fire and smoke detection in video with optimal mass transport based optical flow and neural networks. In Proceedings of IEEE international conference on image processing (pp. 761–764).Google Scholar
  16. Kong, N., Tai, Y. W., & Shin, S. Y. (2011). High-quality reflection separation using polarized images. IEEE Transactions on Image Processing, 20(12), 3393–3405.CrossRefMathSciNetGoogle Scholar
  17. Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2007). Efficient sparse coding algorithms. In Proceedings of advances in neural information processing Systems.Google Scholar
  18. Levin, A., Lischinski, D., & Weiss, Y. (2008). A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 228–242.CrossRefGoogle Scholar
  19. Levin, A., Zomet, A., & Weiss, Y. (2004). Separating reflections from a single image using local features. In Proceedings of IEEE Computer Society conference on computer vision and pattern recognition (Vol. 1, pp. 306–313).Google Scholar
  20. Levin, A., & Weiss, Y. (2007). User assisted separation of reflections from a single image using a sparsity prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1647–1655.CrossRefGoogle Scholar
  21. Long, C., Zhao, J., Han, S., Xiong, L., Yuan, Z., Huang, J., et al. (2010). Transmission: A new feature for computer vision based smoke detection. Lecture notes in artificial intelligence (Vol. 6319, pp. 389–396). Berlin: Springer.Google Scholar
  22. Maruta, H., Nakamura, A., Yamamichi, T., & Kurokawa, F. (2010). Image based smoke detection with local hurst exponent. In Proceedings of IEEE international conference on image processing (pp. 4653–4656).Google Scholar
  23. Meyer, F. G., Averbuch, A. Z., & Coifman, R. R. (2002). Multilayered image representation: Application to image compression. IEEE Transactions on Image Processing, 11(9), 1072–1080.Google Scholar
  24. Minh, H. Q., & Wiskott, L. (2011). Slow feature analysis and decorrelation filtering for separating correlated sources. In Proceedings of IEEE international conference on computer vision (pp. 866–873).Google Scholar
  25. Narasimhan, S. G., & Nayar, S. K. (2002). Vision and the atmosphere. International Journal of Computer Vision, 48(3), 233–254.Google Scholar
  26. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987. Google Scholar
  27. Osher, S., Sole, A., & Vese, L. (2003). Image decomposition and restoration using total variation minimization and the \({H}^{-1}\) norm. Multiscale Modeling & Simulation, 1(3), 349–370.CrossRefMATHMathSciNetGoogle Scholar
  28. Sarel, B., & Irani, M. (2005). Separating transparent layers of repetitive dynamic behaviors. In Proceedings of IEEE international conference on computer vision (Vol. 1, pp. 26–32).Google Scholar
  29. Schechner, Y. Y., Kiryati, N., & Basri, R. (2000). Separation of transparent layers using focus. International Journal of Computer Vision, 39(1), 25–39.CrossRefMATHGoogle Scholar
  30. Starck, J. L., Elad, M., & Donoho, D. L. (2005). Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing, 14(10), 1570–1582.CrossRefMathSciNetGoogle Scholar
  31. Stauffer, C., & Grimson, W. E. L. (2000). Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 747–757.CrossRefGoogle Scholar
  32. Szeliski, R., Avidan, S., & Anandan, P. (2000). Layer extraction from multiple images containing reflections and transparency. In Proceeding of IEEE Computer Society conference on computer vision and pattern recognition (Vol. 1, pp. 246–253).Google Scholar
  33. Tian, H., Li, W., Ogunbona, P., Nguyen, D. T., & Zhan, C. (2011). Smoke detection in videos using non-redundant local binary pattern-based features. In Proceedings of IEEE international workshop on multimedia signal processing (pp. 1–4).Google Scholar
  34. Tonazzini, A., Bedini, L., & Salerno, E. (2006). A markov model for blind image separation by a mean-field EM algorithm. IEEE Transactions on Image Processing, 15(2), 473–482.CrossRefMathSciNetGoogle Scholar
  35. Toreyin, B. U., Dedeoglu, Y., & Cetin, A. E. (2005). Wavelet based real-time smoke detection in video. In Proceedings of European signal processing conference.Google Scholar
  36. Tung, T. X., & Kim, J. M. (2011). An effective four-stage smoke-detection algorithm using video images for early fire-alarm systems. Fire Safety Journal, 46(5), 276–282.CrossRefGoogle Scholar
  37. Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.CrossRefGoogle Scholar
  38. Wang, J., & Cohen, M. F. (2005). An iterative optimization approach for unified image segmentation and matting. In Proceedings of IEEE International Conference on Computer Vision (pp. 936–943).Google Scholar
  39. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., & Yan, S. (2010). Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6), 1031–1044.CrossRefGoogle Scholar
  40. Yu, C., Fang, J., Wang, J., & Zhang, Y. (2010). Video fire smoke detection using motion and color features. Fire Technology, 46(3), 651–663.CrossRefGoogle Scholar
  41. Yuan, F. (2008). A fast accumulative motion orientation model based on integral image for video smoke detection. Pattern Recognition Letters, 29(7), 925–932.CrossRefGoogle Scholar
  42. Zhang, C., & Sato, I. (2011). Separating reflective and fluorescent components of an image. In Proceedings of IEEE Computer Society conference on computer vision and pattern recognition (pp. 185–192).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hongda Tian
    • 1
  • Wanqing Li
    • 1
  • Lei Wang
    • 1
  • Philip Ogunbona
    • 1
  1. 1.School of Computer Science and Software EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations