International Journal of Computer Vision

, Volume 103, Issue 1, pp 80–99 | Cite as

Divergence-Free Wavelets and High Order Regularization

  • S. Kadri-Harouna
  • P. Dérian
  • P. Héas
  • E. Mémin


Expanding on a wavelet basis the solution of an inverse problem provides several advantages. First of all, wavelet bases yield a natural and efficient multiresolution analysis which allows defining clear optimization strategies on nested subspaces of the solution space. Besides, the continuous representation of the solution with wavelets enables analytical calculation of regularization integrals over the spatial domain. By choosing differentiable wavelets, accurate high-order derivative regularizers can be efficiently designed via the basis’s mass and stiffness matrices. More importantly, differential constraints on vector solutions, such as the divergence-free constraint in physics, can be nicely handled with biorthogonal wavelet bases. This paper illustrates these advantages in the particular case of fluid flow motion estimation. Numerical results on synthetic and real images of incompressible turbulence show that divergence-free wavelets and high-order regularizers are particularly relevant in this context.


Divergence-free wavelets High order derivatives regularization Optic-flow estimation 

Supplementary material


  1. Bergen, J., Burt, P., Hingorani, R., & Peleg, S. (1992). A 3-frame algorithm for estimating two-component image motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), 886–895.CrossRefGoogle Scholar
  2. Beylkin, G. (1992). On the representation of operator in bases of compactly supported wavelets. SIAM Journal on Numerical Analysis, 6(6), 1716–1740.MathSciNetCrossRefGoogle Scholar
  3. Cohen, A., Daubechies, I., & Feauveau, J. C. (1992). Bi-orthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 45, 485–560.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Dérian, P., Héas, P., Herzet, C., Mémin, E. (2011). Wavelet-based fluid motion estimation. In: 3rd international conference on scale-space and variational methods in computer vision (SSVM2011). IEEE LNCS, Ein-Gedi.Google Scholar
  5. Deriaz, E., & Perrier, V. (2006). Divergence-free and curl-free wavelets in 2D and 3D, application to turbulence. Journal of Turbulence, 7, 1–37.MathSciNetCrossRefGoogle Scholar
  6. Girault, V., & Raviart, P. (1986). Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer series in computational mathematics. Berlin: Springer.CrossRefGoogle Scholar
  7. Heas, P., Memin, E., Heitz, D., & Mininni, P. (2012). Power laws and inverse motion modeling: application to turbulence measurements from satellite images. Tellus A, 64, 10962. doi: 10.3402/tellusa.v64i0.10962.CrossRefGoogle Scholar
  8. Heitz, D., Carlier, J., Arroyo, G. (2007). Final report on the evaluation of the tasks of the workpackage 2, FLUID project deliverable 5.4. Technical report, INRIA-Cemagref.Google Scholar
  9. Heitz, D., Mémin, E., & Schnörr, C. (2010). Variational fluid flow measurements from image sequences: Synopsis and perspectives. Experiments in fluids, 48(3), 369–393.CrossRefGoogle Scholar
  10. Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203. Google Scholar
  11. Jullien, M., Castiglione, P., & Tabeling, P. (2000). Experimental observation of batchelor dispersion of passive tracers. Physical Review Letters, 85(17), 3636–3639.Google Scholar
  12. Kohlberger, T., Mémin, E., & Schnörr, C. (2003). Dense motion estimation using the Helmholtz decomposition. Scale Space Methods in Computer Vision, 2695, 432–448.CrossRefGoogle Scholar
  13. Kahane, J.-P., & Lemarié-Rieusset, P.-G. (1995). Fourier series and wavelets. Luxembourg: Gordon and Breach.Google Scholar
  14. Lemarié-Rieusset, P.-G. (1992). Analyses multirésolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle. Revista Matematica Iberoamericana, 8, 221–237.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Liu, T., & Shen, L. (2008). Fluid flow and optical flow. Journal of Fluid Mechanics, 614, 253–291.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Mallat, S. (2008). A wavelet tour of signal processing: The sparse way. Orlando: Academic Press.Google Scholar
  17. Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer series in operations research. New York: Springer.Google Scholar
  18. Papadakis, N., Corpetti, T., & Mémin., E,. (2007). Dynamically consistent optical flow estimation. Rio de Janeiro, Brasil: IEEE International Conference on Computer Vision.Google Scholar
  19. Ruhnau, P., & Schnörr, C. (2007). Optical stokes flow estimation: An imaging-based control approach. Experiments in Fluids, 42, 61–78.CrossRefGoogle Scholar
  20. Sass-Hansen, M., Larsen, R., & Christensen, N.-V. (2009). Curl-gradient image warping-introducing deformation potentials for medical image registration using Helmholtz decomposition. VISSAPP, 1, 79–185.Google Scholar
  21. Simard, P. Y., & Mailloux, G. E. (1998). A projection operator for the restoration of divergence-free vector fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 248–256.CrossRefGoogle Scholar
  22. Steinbruecker, F., Pock, T., Cremers, D. (2009). Large displacement optical flow computation without warping. In: IEEE International Conference on Computer Vision (ICCV). Kyoto.Google Scholar
  23. Suter, D. (1994). Motion estimation and vector splines. In: Proceeding conference computer vision pattern recognition (pp. 939–942). Seattle.Google Scholar
  24. Terzopoulos, D. (1986). Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 413–424.CrossRefGoogle Scholar
  25. Wu, Y., Kanade, T., Li, C., & Cohn, J. (2000). Image registration using wavelet-based motion model. International Journal of Computer Vision, 38(2), 129–152.zbMATHCrossRefGoogle Scholar
  26. Yuan, J., Schnörr, C., & Mémin, E. (2007). Discrete orthogonal decomposition and variational fluid flow estimation. Journal of Mathematical Imaging and Vision, 28, 67–80.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • S. Kadri-Harouna
    • 1
  • P. Dérian
    • 1
  • P. Héas
    • 1
  • E. Mémin
    • 1
  1. 1.INRIA Rennes-Bretagne AtlantiqueCampus universitaire de BeaulieuRennes CedexFrance

Personalised recommendations