International Journal of Computer Vision

, Volume 101, Issue 1, pp 161–183 | Cite as

Sparse Adaptive Parameterization of Variability in Image Ensembles

  • Stanley Durrleman
  • Stéphanie Allassonnière
  • Sarang Joshi
Article

Abstract

This paper introduces a new parameterization of diffeomorphic deformations for the characterization of the variability in image ensembles. Dense diffeomorphic deformations are built by interpolating the motion of a finite set of control points that forms a Hamiltonian flow of self-interacting particles. The proposed approach estimates a template image representative of a given image set, an optimal set of control points that focuses on the most variable parts of the image, and template-to-image registrations that quantify the variability within the image set. The method automatically selects the most relevant control points for the characterization of the image variability and estimates their optimal positions in the template domain. The optimization in position is done during the estimation of the deformations without adding any computational cost at each step of the gradient descent. The selection of the control points is done by adding a L 1 prior to the objective function, which is optimized using the FISTA algorithm.

Keywords

Atlas construction Image variability Diffeomorphisms Sparsity Control points FISTA 

Notes

Acknowledgements

We would like to thank Timothy O’Keefe and Paul Sanders for their kind proofreading of the manuscript. This work has been supported by ANR grant IRMGroup and NIH grants NIBIB (5R01EB007688) and NCRR (2P41 RR0112553-12).

References

  1. Allassonnière, S., Trouvé, A., & Younes, L. (2005). Geodesic shooting and diffeomorphic matching via textured meshes. In Proc. of EMMCVPR (pp. 365–381). Google Scholar
  2. Allassonnière, S., Amit, Y., & Trouvé, A. (2007). Towards a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 69(1), 3–29. MathSciNetGoogle Scholar
  3. Allassonnière, S., Kuhn, E., & Trouvé, A. (2010). Construction of bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli, 16(3), 641–678. MathSciNetCrossRefMATHGoogle Scholar
  4. Arsigny, V., Commowick, O., Pennec, X., & Ayache, N. (2006). A log-euclidean framework for statistics on diffeomorphisms. In LNCS: Vol. 4190. Proc. MICCAI (pp. 924–931). Berlin: Springer. Google Scholar
  5. Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202. MathSciNetCrossRefMATHGoogle Scholar
  6. Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61, 139–157. CrossRefGoogle Scholar
  7. Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681–685. CrossRefGoogle Scholar
  8. Dupuis, P., Grenander, U., & Miller, M. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, 56(3), 587–600. MathSciNetMATHGoogle Scholar
  9. Durrleman, S. (2010). Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Thèse de sciences (phd thesis), Université de Nice-Sophia Antipolis. Google Scholar
  10. Durrleman, S., Pennec, X., Trouvé, A., & Ayache, N. (2009). Statistical models of sets of curves and surfaces based on currents. Medical Image Analysis, 13(5), 793–808. CrossRefGoogle Scholar
  11. Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., & Ayache, N. (2011a). Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage, 55(3), 1073–1090. CrossRefGoogle Scholar
  12. Durrleman, S., Prastawa, M., Gerig, G., & Joshi, S. (2011b). Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In G. Székely & H. Hahn (Eds.), LNCS: Vol. 6801. Information processing in medical imaging (IPMI) (pp. 123–134). CrossRefGoogle Scholar
  13. Glasbey, C. A., & Mardia, K. V. (2001). A penalised likelihood approach to image warping. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 63, 465–492. MathSciNetCrossRefMATHGoogle Scholar
  14. Glaunès, J., Qiu, A., Miller, M., & Younes, L. (2008). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision, 80(3), 317–336. doi: 10.1007/s11263-008-0141-9. CrossRefGoogle Scholar
  15. Grenander, U. (1994). General pattern theory: a mathematical theory of regular structures. London: Oxford University Press. MATHGoogle Scholar
  16. Grenander, U., & Miller, M. I. (1998). Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics, LVI(4), 617–694. MathSciNetGoogle Scholar
  17. Grenander, U., Srivastava, A., & Saini, S. (2007). A pattern-theoretic characterization of biological growth. IEEE Transactions on Medical Imaging, 26(5), 648–659. CrossRefGoogle Scholar
  18. Hansen, M. S., Larsen, R., Glocker, B., & Navab, N. (2008). Adaptive parametrization of multivariate b-splines for image registration. In Computer vision and pattern recognition (pp. 1–8). New York: IEEE Press. Google Scholar
  19. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). Berlin: Springer. CrossRefMATHGoogle Scholar
  20. Joshi, S., & Miller, M. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370. MathSciNetCrossRefMATHGoogle Scholar
  21. Lei, W., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J., Csernansky, J., & Miller, M. (2007). Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Transactions on Medical Imaging, 26, 462–470. CrossRefGoogle Scholar
  22. Lorenzen, P., Davis, B., & Joshi, S. C. (2005). Unbiased atlas formation via large deformations metric mapping. In Lecture notes in computer science: Vol. 3750. Medical image computing and computer-assisted intervention—MICCAI (pp. 411–418). Berlin: Springer. Google Scholar
  23. Marsland, S., & McLachlan, R. I. (2007). A Hamiltonian particle method for diffeomorphic image registration. In LNCS: Vol. 4548. Proceedings of information processing in medical imaging (IPMI) (pp. 396–407). Berlin: Springer. CrossRefGoogle Scholar
  24. Meyer, Y. (2001). University lecture series: Vol. 22. Oscillating patterns in image processing and nonlinear evolution equations. Providence: Am. Math. Soc. The fifteenth Dean Jacqueline B. Lewis memorial lectures. MATHGoogle Scholar
  25. Miller, I. M., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405. CrossRefGoogle Scholar
  26. Miller, M., & Younes, L. (2001). Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41, 61–84. CrossRefMATHGoogle Scholar
  27. Miller, M., Trouvé, A., & Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2), 209–228. MathSciNetCrossRefGoogle Scholar
  28. Nesterov, Y. E. (1983). A method of solving a convex programming problem with convergence rate o(1/k 2). Soviet Mathematics. Doklady. 27(2). Translation by A. Rosa. Google Scholar
  29. Pennec, X., Fillard, P., & Ayache, N. (2006). A Riemannian framework for tensor computing. International Journal of Computer Vision, 66(1), 41–66. MathSciNetCrossRefGoogle Scholar
  30. Risser, L., Vialard, F. X., Wolz, R., Murgasova, M., Holm, D. D., & Rueckert, D. (2011). Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping. IEEE Transactions on Medical Imaging, 30, 1746–1759. CrossRefGoogle Scholar
  31. Rueckert, D., Aljabar, P., Heckemann, R. A., Hajnal, J., & Hammers, A. (2006). Diffeomorphic registration using B-splines. In Proc. MICCAI (pp. 702–709). Google Scholar
  32. Singh, N., Fletcher, P., Preston, J., Ha, L., King, R., Marron, J., Wiener, M., & Joshi, S. (2010). Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. In T. Jiang, N. Navab, J. Pluim, & M. Viergever (Eds.), Lecture notes in computer science: Vol. 6363. Proc. MICCAI’10 (pp. 529–537). Berlin: Springer. Google Scholar
  33. Sommer, S., Nielsen, M., Darkner, S., & Pennec, X. (2012a). Higher order kernels and locally affine lddmm registration. arXiv:1112.3166v1.
  34. Sommer, S., Nielsen, M., & Pennec, X. (2012b). Sparsity and scale: compact representations of deformation for diffeomorphic registration. In IEEE workshop on mathematical methods in biomedical image analysis (MMBIA 2012), Breckenridge, Colorado, USA. http://hal.inria.fr/hal-00641357/en/. Google Scholar
  35. Trouvé, A. (1998). Diffeomorphisms groups and pattern matching in image analysis. International Journal of Computer Vision, 28(3), 213–221. CrossRefGoogle Scholar
  36. Trouvé, A., & Younes, L. (2005). Metamorphoses through lie group action. Foundations of Computational Mathematics, 5(2), 173–198. MathSciNetCrossRefMATHGoogle Scholar
  37. Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In Lecture notes in computer science: Vol. 3565. Proceedings of information processing in medical imaging (pp. 381–392). Berlin: Springer. CrossRefGoogle Scholar
  38. Vaillant, M., Miller, M., Younes, L., & Trouvé, A. (2004). Statistics on diffeomorphisms via tangent space representations. NeuroImage, 23, 161–169. CrossRefGoogle Scholar
  39. Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1, Supp. 1), S61–S72. doi: 10.1016/j.neuroimage.2008.10.040. CrossRefGoogle Scholar
  40. Yu, G., Sapiro, G., & Mallat, S. (2010). Image modeling and enhancement via structured sparse model selection. In Proceedings of the international conference on image processing (ICIP) (pp. 1641–1644). New York: IEEE Press. Google Scholar
  41. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 67(2), 301–320. MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stanley Durrleman
    • 1
  • Stéphanie Allassonnière
    • 2
  • Sarang Joshi
    • 1
  1. 1.Scientific Computing and Imaging (SCI) InstituteSalt Lake CityUSA
  2. 2.Centre de Mathématiques Appliquées (CMAP), UMR CNRS 7641Ecole PolytechniquePalaiseauFrance

Personalised recommendations