International Journal of Computer Vision

, Volume 98, Issue 3, pp 263–278

Bayesian Defogging

Article

Abstract

Atmospheric conditions induced by suspended particles, such as fog and haze, severely alter the scene appearance. Restoring the true scene appearance from a single observation made in such bad weather conditions remains a challenging task due to the inherent ambiguity that arises in the image formation process. In this paper, we introduce a novel Bayesian probabilistic method that jointly estimates the scene albedo and depth from a single foggy image by fully leveraging their latent statistical structures. Our key idea is to model the image with a factorial Markov random field in which the scene albedo and depth are two statistically independent latent layers and to jointly estimate them. We show that we may exploit natural image and depth statistics as priors on these hidden layers and estimate the scene albedo and depth with a canonical expectation maximization algorithm with alternating minimization. We experimentally evaluate the effectiveness of our method on a number of synthetic and real foggy images. The results demonstrate that the method achieves accurate factorization even on challenging scenes for past methods that only constrain and estimate one of the latent variables.

Keywords

Defogging Dehazing Scene albedo Scene depth Markov random field Bayesian estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1124–1137. CrossRefGoogle Scholar
  2. Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239. CrossRefGoogle Scholar
  3. Fattal, R. (2008b). Single image dehazing. In Proc. of ACM SIGGRAPH (Vol. 27, pp. 1–9). Google Scholar
  4. Grewe, L., & Brooks, R. (1998). Atmospheric attenuation reduction through multi-sensor fusion. In Proc. of SPIE sensor fusion: architectures, algorithms and applications II (Vol. 3376, pp. 102–109). Google Scholar
  5. He, K., Sun, J., & Tang, X. (2009a). http://personal.ie.cuhk.edu.hk/~hkm007/cvpr09/.
  6. He, K., Sun, J., & Tang, X. (2009b). Single image haze removal using dark channel prior. In Proc. of IEEE int’l conf on comp. vision and pattern recognition (Vol. 1). Google Scholar
  7. Kim, J., & Zabih, R. (2002). Factorial Markov random fields. In Proc. of European conf on comp. vision (pp. 321–334). Google Scholar
  8. Klinker, G., Shafer, S., & Kanade, T. (1990). A Physical approach to color image understanding. International Journal of Computer Vision, 4, 7–38. CrossRefGoogle Scholar
  9. Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2), 147–159. CrossRefGoogle Scholar
  10. Komodakis, N., & Paragios, N. (2009). Beyond pairwise energies: efficient optimization for higher-order MRFs. In Proc. of IEEE int’l conf on comp. vision and pattern recognition (pp. 2985–2992). Google Scholar
  11. Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., & Lischinski, D. (2008a). http://johanneskopf.de/publications/deep_photo/dehazing/index.html.
  12. Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., & Lischinski, D. (2008b). Deep photo: model-based photograph enhancement and viewing. ACM Transactions on Graphics, 27(5), 116:1–116:10. CrossRefGoogle Scholar
  13. Kratz, L., & Nishino, K. (2009). Factorizing scene albedo and depth from a single foggy image. In Proc. of IEEE int’l conf on comp. vision (pp. 1701–1708). Google Scholar
  14. McCartney, E. (1975). Optics of the atmosphere: scattering by molecules and particles. New York: Wiley. Google Scholar
  15. Middleton, W. (1952). Vision through the atmosphere. Toronto: University of Toronto Press. MATHGoogle Scholar
  16. Narasimhan, S. G., & Nayar, S. K. (2002). Vision and the atmosphere. International Journal of Computer Vision, 48(3), 233–254. MATHCrossRefGoogle Scholar
  17. Narasimhan, S., & Nayar, S. (2003a). Shedding light on the weather. In Proc. of IEEE int’l conf on comp. vision and pattern recognition (pp. 665–672). Google Scholar
  18. Narasimhan, S. G., & Nayar, S. K. (2003b). Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 713–724. CrossRefGoogle Scholar
  19. Narasimhan, S. G., & Nayar, S. K. (2003c). Interactive (De)weathering of an image using physical models. In ICCV workshop on color and photometric methods in comp. vision (CPMCV). Google Scholar
  20. Narasimhan, S., Wand, C., & Nayar, S. (2002). All the images of an outdoor scene. In Proc. of European conf on comp. vision (pp. 148–162). Google Scholar
  21. Oakley, J., & Satherley, B. (1998). Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 7(2), 167–179. CrossRefGoogle Scholar
  22. Schechner, Y., Narasimhan, S., & Nayar, S. (2003). Polarization-based vision through haze. Applied Optics, 42(3), 511–525. CrossRefGoogle Scholar
  23. Shafer, S. (1985). Using color to separate reflection components. Color Research and Application, 10(4), 210–218. CrossRefGoogle Scholar
  24. Szeliski, R., Zabih, R., Scharstein, D., O Veksler, V. K., Agarwala, A., Tappen, M., & Rother, C. (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6), 1068–1080. CrossRefGoogle Scholar
  25. Tan, K., & Oakley, J. (2001). Physics-based approach to color image enhancement in poor visibility conditions. Journal of Optical Society America A, 18(10), 2460–2467. CrossRefGoogle Scholar
  26. Tan, R. (2008b). Visibility in bad weather from a single image. In Proc. of IEEE int’l conf on comp. vision and pattern recognition (pp. 1–8). Google Scholar
  27. Tarel, J. P., & Hautière, N. (2009). Fast visibility restoration from a single color or gray level image. In Proc. of IEEE int’l conf on comp. vision. Google Scholar
  28. Tominaga, S., & Wandell, B. (1989). Standard surface-reflectance model and illuminant estimation. Journal of the Optical Society of America A, 6(4), 576–584. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceDrexel UniversityPhiladelphiaUSA

Personalised recommendations