International Journal of Computer Vision

, Volume 97, Issue 2, pp 229–241 | Cite as

Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation

  • François-Xavier Vialard
  • Laurent Risser
  • Daniel Rueckert
  • Colin J. Cotter
Article

Abstract

In the context of large deformations by diffeomorphisms, we propose a new diffeomorphic registration algorithm for 3D images that performs the optimization directly on the set of geodesic flows. The key contribution of this work is to provide an accurate estimation of the so-called initial momentum, which is a scalar function encoding the optimal deformation between two images through the Hamiltonian equations of geodesics. Since the initial momentum has proven to be a key tool for statistics on shape spaces, our algorithm enables more reliable statistical comparisons for 3D images.

Our proposed algorithm is a gradient descent on the initial momentum, where the gradient is calculated using standard methods from optimal control theory. To improve the numerical efficiency of the gradient computation, we have developed an integral formulation of the adjoint equations associated with the geodesic equations.

We then apply it successfully to the registration of 2D phantom images and 3D cerebral images. By comparing our algorithm to the standard approach of Beg et al. (Int. J. Comput. Vis. 61:139–157, 2005), we show that it provides a more reliable estimation of the initial momentum for the optimal path. In addition to promising statistical applications, we finally discuss different perspectives opened by this work, in particular in the new field of longitudinal analysis of biomedical images.

Keywords

Geodesic shooting Computational anatomy Adjoint equations Hamiltonian equations Large deformations via diffeomorphisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allassonnière, S., Trouvé, A., & Younes, L. (2005). Geodesic shooting and diffeomorphic matching via textured meshes. In LNCS: Vol. 3757. Proc. of EMMCVPR. Berlin: Springer. Google Scholar
  2. Allassonnière, S., Kuhn, E., Trouvé, A., & Amit, Y. (2006). Generative model and consistent estimation algorithms for non-rigid deformable models. In ICASSP 2006 Proceedings (pp. 14–19). Google Scholar
  3. Allassonnière, S., Amit, Y., & Trouvé, A. (2007). Towards a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society. Series B, 69(1), 3–29. MathSciNetGoogle Scholar
  4. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113. CrossRefGoogle Scholar
  5. Avants, B. B., Epstein, C. L., Grossman, M., Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12, 26–41. CrossRefGoogle Scholar
  6. Beg, M. F., Helm, P. A., McVeigh, E., Miller, M. I., & Winslow, R. L. (2004). Computational cardiac anatomy using MRI. Magnetic Resonance in Medecine, 52(5), 1167–1174. CrossRefGoogle Scholar
  7. Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flow of diffeomorphisms. International Journal of Computer Vision, 61, 139–157. CrossRefGoogle Scholar
  8. Cockburn, B., & Shu, C. W. (2001). Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 16(3), 173. MathSciNetMATHCrossRefGoogle Scholar
  9. Davis, B. C., Fletcher, P. T., Bullitt, E., & Joshi, S. (2010). Population shape regression from random design data. International Journal of Computer Vision, 90(2), 255–266. CrossRefGoogle Scholar
  10. Du, J., Younes, L., & Qiu, A. (2011). Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. NeuroImage, 56(1), 162–173. CrossRefGoogle Scholar
  11. Dupuis, P., Grenander, U., & Miller, M. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics Google Scholar
  12. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., & Ayache, N. (2009). Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In MICCAI (Vol. 5761, pp. 297–304). Google Scholar
  13. Fletcher, P. T. (2004). Statistical variability in nonlinear spaces: application to shape analysis and dt-mri. PhD thesis, Department of Computer Science, University of North Carolina. Google Scholar
  14. Fletcher, P. T., Lu, C., Pizer, M., & Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions Medical Imaging, 995–1005. Google Scholar
  15. Fletcher, P. T., Venkatasubramanian, S., & Joshi, S. (2008). Robust statistics on Riemannian manifolds via the geometric median. In Computer Vision and Pattern Recognition (pp. 1–8). Google Scholar
  16. Gratton, S., Lawless, A., & Nichols, N. (2007). Approximate Gauss-Newton methods for nonlinear least squares problems. SIAM Journal on Optimization, 18(1), 106–132. MathSciNetMATHGoogle Scholar
  17. Grenander, U. (1993). General pattern theory. Oxford: Oxford Science Publications. Google Scholar
  18. Grenander, U. & Miller, M. I. (1998). Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics, LVI(4), 617–694. MathSciNetGoogle Scholar
  19. Grenander, U., Srivastava, A., & Saini, S. (2006). Characterization of biological growth using iterated diffeomorphisms. In ISBI (pp. 1136–1139). Google Scholar
  20. Grenander, U., Srivastava, A., & Saini, S. (2007). A pattern-theoretic characterization of biological growth. IEEE Transactions on Medical Imaging, 26(5), 648–659. CrossRefGoogle Scholar
  21. Hart, G. L., Zach, C., & Niethammer, M. (2009). An optimal control approach for deformable registration. In Computer Vision and Pattern Recognition, Workshop (pp. 9–16). CrossRefGoogle Scholar
  22. Helm, P. A., Younes, L., Beg, M. F., Ennis, D. B., Leclercq, C., Faris, O. P., McVeigh, E., Kass, D., Miller, M. I., & Winslow, R. L. (2006). Evidence of structural remodeling in the dyssynchronous failing heart. Circulation Research, 98, 125–132. CrossRefGoogle Scholar
  23. Holm, D. D., Trouvé, A., & Younes, L., (2009, to appear). The Euler Poincaré theory of metamorphosis. Quarterly of Applied Mathematics. Google Scholar
  24. Jiang, G. S., & Shu, C. W. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126. Google Scholar
  25. Joshi, S., & Miller, M. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370. MathSciNetMATHCrossRefGoogle Scholar
  26. Khan, A., & Beg, M. (2008). Representation of time-varying shapes in the large deformation diffeomorphic framework. In ISBI (pp. 1521–1524). Google Scholar
  27. Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R., Mann, J., & Parseya, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802. CrossRefGoogle Scholar
  28. Le Dimet, F. X., & Talagrand, O. (1986). Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus Series A, 38, 97–110. CrossRefGoogle Scholar
  29. Le Dimet, F. X., Ngodock, H. E., & Navon, I. M. (1997). Sensitivity analysis in variational data assimilation. Journal of the Meteorological Society Japan, 145–155. Google Scholar
  30. Le Veque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  31. Lee, J. M. (1997). Riemannian manifolds an introduction to curvature. Graduate texts in mathematics Berlin: Springer. MATHGoogle Scholar
  32. Ma, J. Miller, M. I. Younes, L. (2010). A Bayesian generative model for surface template estimation. International Journal of Biomedical Imaging, 2010, 14. CrossRefGoogle Scholar
  33. Marsland, S., & McLachlan, R. I. (2007). A Hamiltonian particle method for diffeomorphic image registration. In Lecture Notes in Computer Science: Vol. 4548. Proceedings of Information Processing in Medical Images (pp. 396–407). Berlin: Springer. CrossRefGoogle Scholar
  34. Miller, M., & Younes, L. (2001). Group actions, homeomorphisms, and matching: a general framework. International Journal of Computer Vision, 41, 61–84. MATHCrossRefGoogle Scholar
  35. Miller, M. I., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405. CrossRefGoogle Scholar
  36. Miller, M. I., Trouvé, A., & Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2), 209–228. MathSciNetCrossRefGoogle Scholar
  37. Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S. J., Doria, V., Serag, A., Gousias, I. S., Boardman, J. P., Rutherford, M. A., Edwards, A. D., Hajnal, J. V., & Rueckert, D. (2011). A dynamic 4d probabilistic atlas of the developing brain. NeuroImage, 54(4), 2750–63. CrossRefGoogle Scholar
  38. Ngodock, H. E. (2005). Efficient implementation of covariance multiplication for data assimilation with the representer method. Ocean Modelling, 8(3), 237–251. CrossRefGoogle Scholar
  39. Niethammer, M., Hart, G., & Zach, C. (2009). An optimal control approach for the registration of image time-series. 2427–2434. Google Scholar
  40. Pennec, X. (2009). Statistical computing on manifolds: From Riemannian geometry to computational anatomy. Emerging Trends in Visual Computing, 5416, 347–386. CrossRefGoogle Scholar
  41. Risser, L., Vialard, F. X., Wolz, R., Holm, D. D., & Rueckert, D., (2010). Simultaneous fine and coarse diffeomorphic registration: application to the atrophy measurement in Alzheimer’s disease. In International conference on medical image computing and computer assisted intervention (MICCAI). Lecture notes in computer science. Google Scholar
  42. Risser, L., Vialard, F., Wolz, R., Murgasova, M., Holm, D., & Rueckert, D. (2011). Simultaneous multiscale registration using large deformation diffeomorphic metric mapping IEEE Transactions on Medical Imaging, 99, 1. doi:10.1007/s11263-011-0481-8 Google Scholar
  43. Sasaki, Y. (1970). Some basic formalism in numerical variational. Monthly Weather Review, 98, 875–883. CrossRefGoogle Scholar
  44. Shu, C. W. (2009). High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Review, 51(1), 82. MathSciNetMATHCrossRefGoogle Scholar
  45. Singh, N., Fletcher, P. T., Preston, J. S., Ha, L., King, R., Marron, J. S., Wiener, M., & Joshi, S. (2010). Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. In T. Jiang, N. Navab, J. P. Pluim, & Viergever M. A. (Eds.), MICCAI (pp. 529–537). Berlin: Springer. Google Scholar
  46. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97. CrossRefGoogle Scholar
  47. Trouvé, A. (1998). Diffeomorphism groups and pattern matching in image analysis. International Journal of Computer Vision, 28(3), 213–221. CrossRefGoogle Scholar
  48. Trouvé, A., & Vialard, F. X. (2010, accepted for publication). Shape splines and stochastic shape evolutions: a second order point of view. Quarterly of Applied Mathematics. Google Scholar
  49. Trouvé, A., & Younes, L. (2005). Local geometry of deformable templates. SIAM Journal of Mathematical Analysis. Google Scholar
  50. Vaillant, M., Miller, M. I., Trouvé, A., Younes, L. (2004). Statistics on diffeomorphisms via tangent space representations. NeuroImage, 23(S1), S161–S169. CrossRefGoogle Scholar
  51. Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1), S61–S72. CrossRefGoogle Scholar
  52. Vialard, F. X. (2009). Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. PhD thesis, Ecole Normale Supérieure de Cachan. Google Scholar
  53. Vialard, F. X., & Santambrogio, F. (2009). Extension to BV functions of the large deformation diffeomorphisms matching approach. Comptes Rendus Mathematique, 347(1-2), 27–32. MathSciNetMATHCrossRefGoogle Scholar
  54. Wang, L., Beg, M. F., Ratnanather, J. T., Ceritoglu, C., Younes, L., Morris, J., Csernansky, J., & Miller, M. I. (2006). Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Transactions on Medical Imaging, 26, 462–470. CrossRefGoogle Scholar
  55. Younes, L. (2007). Jacobi fields in groups of diffeomorphisms and applications. Quarterly of Applied Mathematics, 65, 113–134. MathSciNetMATHGoogle Scholar
  56. Younes, L. (2010). Shapes and diffeomorphisms. Berlin: Springer. MATHCrossRefGoogle Scholar
  57. Younes, L., Arrate, F., & Miller, M. I. (2009). Evolutions equations in computational anatomy. NeuroImage, 45(1), S40–S50. Mathematics in Brain Imaging (Supplement 1) CrossRefGoogle Scholar
  58. Zeidler, E. (1995). Applied functional analysis: main principles and their applications. Applied Mathematical Sciences, 109. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • François-Xavier Vialard
    • 1
  • Laurent Risser
    • 2
  • Daniel Rueckert
    • 3
  • Colin J. Cotter
    • 4
  1. 1.Institute for Mathematical ScienceImperial College LondonLondonUK
  2. 2.Biomedical Image Analysis Group and Institute for Mathematical SciencesImperial College LondonLondonUK
  3. 3.Department of ComputingImperial College LondonLondonUK
  4. 4.Department of AeronauticsImperial College LondonLondonUK

Personalised recommendations