Advertisement

International Journal of Computer Vision

, Volume 97, Issue 1, pp 2–17 | Cite as

Physical Scale Keypoints: Matching and Registration for Combined Intensity/Range Images

  • Eric R. Smith
  • Richard J. Radke
  • Charles V. Stewart
Article

Abstract

We present a new framework for detecting, describing, and matching keypoints in combined range-intensity data, resulting in what we call physical scale keypoints. We first produce an image mesh by backprojecting associated 2D intensity images onto the 3D range data. We detect and describe keypoints on the image mesh using an analogue of the SIFT algorithm for images with two key modifications: the process is made insensitive to viewpoint and structural discontinuities using a novel bilinear filter, and a physical scale space is constructed that exploits the reliable range measurements. Keypoints are matched between scans only when their physical scales agree, avoiding many potential false matches. Finally, the matches are rank-ordered using a new quality measure and supplied to a registration algorithm that refines each match into a rigid transformation for the entire scan pair. We report experimental results on keypoint detection and matching and range scan registration and verification in a set of difficult real-world scan pairs, showing that the new physical scale keypoints are demonstrably better than a competing approach based on backprojected SIFT keypoints.

Keywords

Range data Range registration SIFT Range/intensity images Bilateral filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagündüz, E., & Ulusoy, I. (2009). Scale and orientation invariant 3D interest point extraction using hk curvatures. In Proceedings of the IEEE international conference on computer vision (ICCV 3dRR workshops). Google Scholar
  2. Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. CrossRefGoogle Scholar
  3. Brown, M., & Lowe, D. G. (2003). Recognising panoramas. In Proceedings of the IEEE international conference on computer vision (ICCV). Google Scholar
  4. Brown, M., Szeliski, R., & Winder, S. (2005). Multi-image matching using multi-scale oriented patches. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). Google Scholar
  5. Chen, Y., & Medioni, G. (1992). Object modeling by registration of multiple range images. Image and Vision Computing, 10(3), 145–155. CrossRefGoogle Scholar
  6. Fleishman, S., Drori, I., & Cohen-Or, D. (2003). Bilateral mesh denoising. ACM Transactions on Graphics, 22(3), 950–953. CrossRefGoogle Scholar
  7. Frome, A., Huber, D., Kolluri, R., Bülow, T., & Malik, J. (2004). Recognizing objects in range data using regional point descriptors. In Proceedings of the European conference on computer vision (ECCV). Google Scholar
  8. Hua, J., Lai, Z., Dong, M., Gu, X., & Qin, H. (2008). Geodesic distance-weighted shape vector image diffusion. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1643–1650. CrossRefGoogle Scholar
  9. Johnson, A. E., & Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 433–449. CrossRefGoogle Scholar
  10. King, B. J., Malisiewicz, T., Stewart, C. V., & Radke, R. J. (2005). Registration of multiple range scans as a location recognition problem: Hypothesis generation, refinement and verification. In Proceedings of the international conference on 3-D digital imaging and modeling (3DIM). Google Scholar
  11. Lindeberg, T. (1994). Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics, 21, 224–270. CrossRefGoogle Scholar
  12. Lowe, D. (2004). Distinctive image features from scale-invariant key-points. International Journal of Computer Vision, 60(2), 91–110. CrossRefGoogle Scholar
  13. Mian, A. S., Bennamoun, M., & Owens, R. A. (2004). Matching tensors for automatic correspondence and registration. In Proceedings of the European conference on computer vision (ECCV). Google Scholar
  14. Mikolajczyk, K., & Schmid, C. (2004). Scale & affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86. CrossRefGoogle Scholar
  15. Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630. CrossRefGoogle Scholar
  16. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., & Gool, L. V. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(1–2), 43–72. CrossRefGoogle Scholar
  17. Novatnack, J., & Nishino, K. (2007). Scale-dependent 3D geometric features. In Proceedings of the IEEE international conference on computer vision (ICCV). Google Scholar
  18. Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proceedings of the international conference on 3-D digital imaging and modeling (3DIM). Google Scholar
  19. Smith, E., King, B., Stewart, C., & Radke, R. (2007). Registration of combined range-intensity scans: Initialization through verification. Computer Vision and Image Understanding, 110(2), 226–244. CrossRefGoogle Scholar
  20. Smith, E., Radke, R., & Stewart, C. (2010). Physical scale intensity-based range keypoints. In Proceedings of the international symposium on 3-D data processing visualization and transmission (3DPVT). Google Scholar
  21. Starck, J., & Hilton, A. (2007). Correspondence labelling for wide-timeframe free-form surface matching. In Proceedings of the international conference on computer vision (ICCV). Google Scholar
  22. Wu, C., Clipp, B., Li, X., Frahm, J.-M., & Pollefeys, M. (2008). 3D model matching with viewpoint-invariant patches (VIP). In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). Google Scholar
  23. Xu, G. (2004). Convergent discrete Laplace-Beltrami operators over triangular surfaces. In Proceedings of geometric modeling and processing (GMP). Google Scholar
  24. Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009). Surface feature detection and description with applications to mesh matching. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). Google Scholar
  25. Zhong, Y. (2009). Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of the IEEE international conference on computer vision (ICCV 3dRR workshops). Google Scholar
  26. Zou, G., Hua, J., Lai, Z., Gu, X., & Dong, M. (2009). Intrinsic geometric scale space by shape diffusion. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1193–1200. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eric R. Smith
    • 1
  • Richard J. Radke
    • 1
  • Charles V. Stewart
    • 1
  1. 1.TroyUSA

Personalised recommendations