International Journal of Computer Vision

, Volume 96, Issue 2, pp 212–234 | Cite as

Dense versus Sparse Approaches for Estimating the Fundamental Matrix

  • Levi Valgaerts
  • Andrés Bruhn
  • Markus Mainberger
  • Joachim Weickert
Article

Abstract

There are two main strategies for solving correspondence problems in computer vision: sparse local feature based approaches and dense global energy based methods. While sparse feature based methods are often used for estimating the fundamental matrix by matching a small set of sophistically optimised interest points, dense energy based methods mark the state of the art in optical flow computation. The goal of our paper is to show that this separation into different application domains is unnecessary and can be bridged in a natural way. As a first contribution we present a new application of dense optical flow for estimating the fundamental matrix. Comparing our results with those obtained by feature based techniques we identify cases in which dense methods have advantages over sparse approaches. Motivated by these promising results we propose, as a second contribution, a new variational model that recovers the fundamental matrix and the optical flow simultaneously as the minimisers of a single energy functional. In experiments we show that our coupled approach is able to further improve the estimates of both the fundamental matrix and the optical flow. Our results prove that dense variational methods can be a serious alternative even in classical application domains of sparse feature based approaches.

Keywords

Optical flow Fundamental matrix Performance evaluation 3D reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Esclarín, J., Lefébure, M., & Sánchez, J. (1999). A PDE model for computing the optical flow. In Proc. XVI congreso de ecuaciones diferenciales y aplicaciones (pp. 1349–1356). Las Palmas de Gran Canaria, Spain. Google Scholar
  2. Alvarez, L., Deriche, R., Papadopoulo, T., & Sánchez, J. (2002a). Symmetrical dense optical flow estimation with occlusions detection. In A. Heyden, G. Sparr, M. Nielsen, & P. Johansen (Eds.), Lecture notes in computer science: Vol. 2350. Computer vision—ECCV 2002 (pp. 721–736). Berlin: Springer. CrossRefGoogle Scholar
  3. Alvarez, L., Deriche, R., Sánchez, J., & Weickert, J. (2002b). Dense disparity map estimation respecting image derivatives: a PDE and scale-space based approach. Journal of Visual Communication and Image Representation, 13(1/2), 3–21. CrossRefGoogle Scholar
  4. Amiaz, T., Lubetzky, E., & Kiryati, N. (2007). Coarse to over-fine optical flow estimation. Pattern Recognition, 40(9), 2496–2503. CrossRefMATHGoogle Scholar
  5. Baker, S., Roth, S., Scharstein, D., Black, M. J., Lewis, J. P., & Szeliski, R. (2007). A database and evaluation methodology for optical flow. In Proc. 2007 IEEE international conference on computer vision. Rio de Janeiro: IEEE Computer Society Press. Google Scholar
  6. Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2009). A database and evaluation methodology for optical flow (Tech. Rep. MSR-TR-2009-179). Redmond: Microsoft Research, WA. Google Scholar
  7. Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance of optical flow techniques. International Journal of Computer Vision, 12(1), 43–77. CrossRefGoogle Scholar
  8. Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. J. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359. CrossRefGoogle Scholar
  9. Ben-Ari, R., & Sochen, N. (2007). Variational stereo vision with sharp discontinuities and occlusion handling. In Proc. eleventh international conference on computer vision. Rio de Janeiro: IEEE Computer Society Press. Google Scholar
  10. Bitton, D., Rosman, G., Nir, T., Bruckstein, A. M., Feuer, A., & Kimmel, R. (2009). Over-parameterized optical flow using a stereoscopic constraint (Tech. Rep. CIS-2009-18). Computer Science Department, Technion–Israel Institute of Technology, Israel. Google Scholar
  11. Black, M. J., & Anandan, P. (1991). Robust dynamic motion estimation over time. In Proc. 1991 IEEE conference on computer vision and pattern recognition (pp. 292–302). Maui: IEEE Computer Society Press. Google Scholar
  12. Brooks, M. J., Chojnacki, W., & Baumela, L. (1997). Determining the ego-motion of an uncalibrated camera from instantaneous optical flow. Journal of the Optical Society of America A, 14, 2670–2677. CrossRefGoogle Scholar
  13. Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optic flow estimation based on a theory for warping. In T. Pajdla & J. Matas (Eds.), Lecture notes in computer science: Vol. 3024. Computer Vision—ECCV 2004 (pp. 25–36). Berlin: Springer. CrossRefGoogle Scholar
  14. Brox, T., Bregler, C., & Malik, J. (2009). Large displacement optical flow. In Proc. 2009 IEEE computer society conference on computer vision and pattern recognition (pp. 41–48). Miami: IEEE Computer Society Press. CrossRefGoogle Scholar
  15. Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision, 61(3), 211–231. CrossRefGoogle Scholar
  16. Bruhn, A., Weickert, J., Kohlberger, T., & Schnörr, C. (2006). A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision, 70(3), 257–277. CrossRefGoogle Scholar
  17. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679–698. CrossRefGoogle Scholar
  18. Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277. CrossRefMATHGoogle Scholar
  19. Chum, O., Matas, J., & Obdrzalek, S. (2004). Enhancing RANSAC by generalized model optimization. In K. S. Hong & Z. Zhang (Eds.), Lecture notes in computer science: Vol. 2. Proc. sixth Asian conference on computer vision (pp. 812–817). Google Scholar
  20. Chum, O., Werner, T., & Matas, J. (2005). Two-view geometry estimation unaffected by a dominant plane. In Proc. 2005 IEEE computer society conference on computer vision and pattern recognition (pp. 772–779). San Diego: IEEE Computer Society Press. Google Scholar
  21. Faugeras, O. (1992). What can be seen in three dimensions with an uncalibrated stereo rig. In G. Sandini (Ed.), Lecture notes in computer science: Vol. 588. Computer vision—ECCV 1992 (pp. 563–578). Berlin: Springer. Google Scholar
  22. Faugeras, O., Luong, Q. T., & Papadopoulo, T. (2001). The geometry of multiple images. Cambridge: MIT Press. MATHGoogle Scholar
  23. Fischler, M., & Bolles, R. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24, 381–385. CrossRefMathSciNetGoogle Scholar
  24. Fitzgibbon, A. W. (2001). Simultaneous linear estimation of multiple view geometry and lens distortion. In Proc. 2001 IEEE computer society conference on computer vision and pattern recognition (pp. 125–132). Kauai: IEEE Computer Society Press. Google Scholar
  25. Förstner, W., & Gülch, E. (1987). A fast operator for detection and precise location of distinct points, corners and centres of circular features. In Proc. ISPRS intercommission conference on fast processing of photogrammetric data (pp. 281–305). Interlaken, Switzerland. Google Scholar
  26. Frahm, J. M., & Pollefeys, M. (2006). RANSAC for (quasi-) degenerate data (QDEGSAC). In Proc. 2006 IEEE computer society conference on computer vision and pattern recognition (pp. 453–460). New York: IEEE Computer Society Press. Google Scholar
  27. Golub, G. H., & Van Loan, C. M. (1989). Matrix computations. Baltimore: The John Hopkins University Press. MATHGoogle Scholar
  28. Gwosdek, P., Zimmer, H., Grewenig, S., Bruhn, A., & Weickert, J. (2010). A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. In Proc. 2010 ECCV workshop on computer vision with GPUs. Heraklion, Greece. Google Scholar
  29. Hanna, K. J. (1991). Direct multi-resolution estimation of ego-motion and structure from motion. In Proc. workshop on visual motion (pp. 156–162). Washington: IEEE Computer Society Press. CrossRefGoogle Scholar
  30. Harris, C. G., & Stephens, M. (1988). A combined corner and edge detector. In Proc. fourth alvey vision conference (pp. 147–152). Manchester, England. Google Scholar
  31. Hartley, R. (1997). In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6), 580–593. CrossRefGoogle Scholar
  32. Hartley, R., & Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge: Cambridge University Press. MATHGoogle Scholar
  33. Hartley, R., Gupta, R., & Chang, T. (1992). Stereo from uncalibrated cameras. In Proc. 1992 IEEE international conference on image processing (pp. 761–764). Champaign: IEEE Computer Society Press. Google Scholar
  34. Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203. CrossRefGoogle Scholar
  35. Huber, P. J. (1981). Robust statistics. New York: Wiley. CrossRefMATHGoogle Scholar
  36. Kanatani, K., Shimizu, Y., Ohta, N., Brooks, M. J., Chojnacki, W., & van den Hengel, A. (2000). Fundamental matrix from optical flow: optimal computation and reliability evaluation. Journal of Electronic Imaging, 9, 194–202. CrossRefGoogle Scholar
  37. Kim, Y. H., Martinez, A. M., & Kak, A. C. (2005). Robust motion estimation under varying illumination. Image and Vision Computing, 23(4), 365–375. CrossRefGoogle Scholar
  38. Klaus, A., Sormann, M., & Karner, K. (2006). Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In Proc. 18th international conference on pattern recognition, Part III (Vol. 3, pp. 15–18). Hong Kong, China. Google Scholar
  39. Kolmogorov, V., & Zabih, R. (2002). Multi-camera scene reconstruction via graph cuts. In A. Heyden, G. Sparr, M. Nielsen, & P. Johansen (Eds.), Lecture notes in computer science: Vol. 2352. Computer vision—ECCV 2002, Part III (pp. 82–96). Berlin: Springer. CrossRefGoogle Scholar
  40. Lei, C., Selzer, J., & Yang, Y. H. (2006). Region-tree based stereo using dynamic programming optimization. In Proc. 2006 IEEE computer society conference on computer vision and pattern recognition (pp. 2378–2385). Washington: IEEE Computer Society Press. Google Scholar
  41. Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2, 164–168. MATHMathSciNetGoogle Scholar
  42. Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections. Nature, 293, 133–135. CrossRefGoogle Scholar
  43. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. CrossRefGoogle Scholar
  44. Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proc. seventh international joint conference on artificial intelligence (pp. 674–679). Vancouver, Canada. Google Scholar
  45. Luong, Q. T., & Faugeras, O. D. (1996). The fundamental matrix: theory, algorithms, and stability analysis. International Journal of Computer Vision, 17(1), 43–75. CrossRefGoogle Scholar
  46. Mainberger, M., Bruhn, A., & Weickert, J. (2008). Is dense optical flow useful to compute the fundamental matrix. In A. Campilho & M. Kamel (Eds.), Lecture notes in computer science: Vol. 5112. Image analysis and recognition (pp. 630–639). Póvoa de Varzim, Portugal. Berlin: Springer. CrossRefGoogle Scholar
  47. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441. CrossRefMATHMathSciNetGoogle Scholar
  48. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London, Series B, 207, 187–217. CrossRefGoogle Scholar
  49. Mémin, E., & Pérez, P. (1998). Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Transactions on Image Processing, 7(5), 703–719. CrossRefGoogle Scholar
  50. Mémin, E., & Pérez, P. (2002). Hierarchical estimation and segmentation of dense motion fields. International Journal of Computer Vision, 46(2), 129–155. CrossRefMATHGoogle Scholar
  51. Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630. CrossRefGoogle Scholar
  52. Mileva, Y., Bruhn, A., & Weickert, J. (2007). Illumination-robust variational optical flow with photometric invariants. In F. Hamprecht, C. Schnörr, & B. Jähne (Eds.), Lecture notes in computer science: Vol. 4713. Pattern recognition (pp. 152–162). Berlin: Springer. CrossRefGoogle Scholar
  53. Nagel, H. H., & Enkelmann, W. (1986). An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 565–593. CrossRefGoogle Scholar
  54. Nir, T., Bruckstein, A. M., & Kimmel, R. (2008). Over-parameterized variational optical flow. International Journal of Computer Vision, 76(2), 205–216. CrossRefGoogle Scholar
  55. Ohta, N., & Kanatani, K. (1995). Optimal structure from motion algorithm for optical flow. IEICE Transactions on Information and Systems, E78-D(12), 1559–1566. Google Scholar
  56. Proesmans, M., Van Gool, L., Pauwels, E., & Oosterlinck, A. (1994). Determination of optical flow and its discontinuities using non-linear diffusion. In J. O. Eklundh (Ed.), Lecture notes in computer science: Vol. 801. Computer vision—ECCV ’94 (pp. 295–304). Berlin: Springer. Google Scholar
  57. Raguram, R., Frahm, J. M., & Pollefeys, M. (2008). A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Lecture notes in computer science: Vol. 5303. Computer vision—ECCV 2008, Part II (pp. 500–513). Berlin: Springer. CrossRefGoogle Scholar
  58. Roth, S., & Black, M. (2005). On the spatial statistices of optical flow. In Proc. tenth international conference on computer vision (Vol. 1, pp. 42–49). Beijing: IEEE Computer Society Press. Google Scholar
  59. Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley. CrossRefMATHGoogle Scholar
  60. Saragih, J., & Goecke, R. (2007). Monocular and stereo methods for AAM learning from video. In Proc. 2007 IEEE computer society conference on computer vision and pattern recognition. Minneapolis: IEEE Computer Society Press. Google Scholar
  61. Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1–3), 7–42. CrossRefMATHGoogle Scholar
  62. Schlesinger, D., Flach, B., & Shekhovtsov, A. (2004). A higher order MRF-model for stereo-reconstruction. In C. Rasmussen, H. Bülthoff, M. Giese, & B. Schölkopf (Eds.), Lecture notes in computer science: Vol. 3175. Pattern recognition (pp. 440–446). Berlin: Springer. CrossRefGoogle Scholar
  63. Schnörr, C. (1994). Segmentation of visual motion by minimizing convex non-quadratic functionals. In Proc. twelfth international conference on pattern recognition (Vol. A, pp. 661–663). Jerusalem: IEEE Computer Society Press. Google Scholar
  64. Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proc. 2006 IEEE conference on computer vision and pattern recognition (pp. 519–528). New York: IEEE Computer Society Press. Google Scholar
  65. Sheikh, Y., Hakeem, A., & Shah, M. (2007). On the direct estimation of the fundamental matrix. In Proc. 2007 IEEE computer society conference on computer vision and pattern recognition. Minneapolis: IEEE Computer Society Press. Google Scholar
  66. Shi, J., & Tomasi, C. (1994). Good features to track. In Proc. 1994 IEEE computer society conference on computer vision and pattern recognition (pp. 593–600). Seattle: IEEE Computer Society Press. Google Scholar
  67. Slesareva, N., Bruhn, A., & Weickert, J. (2005). Optic flow goes stereo: a variational approach for estimating discontinuity-preserving dense disparity maps. In W. Kropatsch, R. Sablatnig, & A. Hanbury (Eds.), Lecture notes in computer science: Vol. 3663. Pattern recognition (pp. 33–40). Berlin: Springer. CrossRefGoogle Scholar
  68. Steinbrücker, F., Pock, T., & Cremers, D. (2009a). Advanced data terms for variational optic flow estimation. In M. Magnor, B. Rosenhahn, & H. Theisel (Eds.), Proceedings of the vision, modeling, and visualization workshop (VMV), DNB (pp. 155–164). Google Scholar
  69. Steinbrücker, F., Pock, T., & Cremers, D. (2009b). Large displacement optical flow computation without warping. In Proc. twelfth international conference on computer vision. Kyoto: IEEE Computer Society Press. Google Scholar
  70. Stewart, C. V. (1999). Robust parameter estimation in computer vision. SIAM Review, 41(3), 513–537. CrossRefMATHMathSciNetGoogle Scholar
  71. Strecha, C., Tuytelaars, T., & Van Gool, L. (2003). Dense matching of multiple wide-baseline views. In Proc. ninth international conference on computer vision (Vol. 2, pp. 1194–1201). Washington: IEEE Computer Society Press. CrossRefGoogle Scholar
  72. Strecha, C., Fransens, R., & Van Gool, L. (2004). A probabilistic approach to large displacement optical flow and occlusion detection. In D. Comaniciu, K. Kanatani, R. Mester, & D. Suter (Eds.), Lecture notes in computer science: Vol. 3247. Statistical methods in video processing (pp. 71–82). Berlin: Springer. CrossRefGoogle Scholar
  73. Strecha, C., von Hansen, W., Van Gool, L. J., Fua, P., & Thoennessen, U. (2008). On benchmarking camera calibration and multi-view stereo for high resolution imagery. In Proc. 2008 IEEE computer society conference on computer vision and pattern recognition. Anchorage: IEEE Computer Society Press. Google Scholar
  74. Sun, D., Roth, S., Lewis, J. P., & Black, M. J. (2008). Learning optical flow. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Lecture notes in computer science: Vol. 5304. Computer vision—ECCV 2008, Part III (pp. 83–97). Berlin: Springer. CrossRefGoogle Scholar
  75. Tomasi, C., & Kanade, T. (1991). Detection and tracking of point features (Tech. Rep. CMU-CS-91-132). School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. Google Scholar
  76. Torr, P. H. S., & Murray, D. W. (1997). The development and comparison of robust methods for estimating the fundamental matrix. International Journal of Computer Vision, 24(3), 271–300. CrossRefGoogle Scholar
  77. Tsai, R., & Huang, T. (1984). Uniqueness and estimation of thee-dimensional motion parameters of rigid objects with curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1), 13–26. CrossRefGoogle Scholar
  78. Valgaerts, L., Bruhn, A., & Weickert, J. (2008). A variational model for the joint recovery of the fundamental matrix and the optical flow. In G. Rigoll (Ed.), Lecture Notes in Computer Science: Vol. 3663. Pattern recognition (pp. 314–324). Berlin: Springer. CrossRefGoogle Scholar
  79. Valgaerts, L., Bruhn, A., Zimmer, H., Weickert, J., Stoll, C., & Theobalt, C. (2010). Joint estimation of motion, structure and geometry from stereo sequences. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Lecture Notes in Computer Science: Vol. 6314. Computer vision—ECCV 2010 (pp. 568–581). Berlin: Springer. CrossRefGoogle Scholar
  80. Viéville, T., & Faugeras, O. (1995). Motion analysis with a camera with unknown, and possibly varying intrinsic parameters. In Proc. fifth international conference on computer vision (pp. 750–756). Cambridge: IEEE Computer Society Press. Google Scholar
  81. Wang, H., & Brady, M. (1994). A practical solution to corner detection. In Proc. 1994 IEEE international conference on image processing (Vol. 1, pp. 919–923). Austin: IEEE Computer Society Press. CrossRefGoogle Scholar
  82. Wedel, A., Pock, T., Braun, J., Franke, U., & Cremers, D. (2008). Duality TV-L1 flow with fundamental matrix prior. In Proc. image and vision computing New Zealand. Auckland: IEEE Computer Society Press. Google Scholar
  83. Wedel, A., Cremers, D., Pock, T., & Bischof, H. (2009). Structure- and motion-adaptive regularization for high accuracy optic flow. In Proc. twelfth international conference on computer vision. Kyoto: IEEE Computer Society Press. Google Scholar
  84. Weickert, J., & Schnörr, C. (2001). A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision, 45(3), 245–264. CrossRefMATHGoogle Scholar
  85. Weng, J., Huang, T., & Ahuja, N. (1989). Motion and structure from two perspective views: algorithms, error analysis and error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(5), 451–476. CrossRefGoogle Scholar
  86. Weng, J., Ahuja, N., & Huang, T. (1993). Optimal motion and structure estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 864–884. CrossRefGoogle Scholar
  87. Werlberger, M., Pock, T., & Bischof, H. (2010). Motion estimation with non-local total variation regularization. In Proc. 2010 IEEE computer society conference on computer vision and pattern recognition (pp. 2464–2471). San Francisco: IEEE Computer Society Press. CrossRefGoogle Scholar
  88. Zach, C., Pock, T., & Bischof, H. (2007a). A duality based approach for realtime TV-L 1 optical flow. In F. Hamprecht, C. Schnörr, & B. Jahne (Eds.), Lecture Notes in Computer Science: Vol. 4713. Pattern recognition (pp. 214–223). Berlin: Springer. CrossRefGoogle Scholar
  89. Zach, C., Pock, T., & Bischof, H. (2007b). A globally optimal algorithm for robust TV-L 1 range image integration. In Proc. ninth international conference on computer vision. Rio de Janeiro: IEEE Computer Society Press. Google Scholar
  90. Zeisl, B., Georgel, P. F., Schweiger, F., Steinbach, E., & Navab, N. (2009). Estimation of location uncertainty for scale invariant feature points. In Proc. 2009 British machine vision conference. London, England. Google Scholar
  91. Zhang, Z. (1998). Determining the epipolar geometry and its uncertainty: a review. International Journal of Computer Vision, 27(2), 161–195. CrossRefGoogle Scholar
  92. Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., & Seidel, H. P. (2009). Complementary optic flow. In D. Cremers, Y. Boykov, A. Blake, & F. R. Schmidt (Eds.), Lecture notes in computer science: Vol. 5681. Energy minimization methods in computer vision and pattern recognition—EMMCVPR (pp. 207–220). Berlin: Springer. CrossRefGoogle Scholar
  93. Zimmer, H., Bruhn, A., & Weickert, J. (2011). Optic flow in harmony. International Journal of Computer Vision, 93(3), 638–388. CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Levi Valgaerts
    • 1
  • Andrés Bruhn
    • 1
  • Markus Mainberger
    • 2
  • Joachim Weickert
    • 2
  1. 1.Vision and Image Processing Group, MMCI Cluster of Excellence, Campus E1.1Saarland UniversitySaarbrückenGermany
  2. 2.Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Campus E1.1Saarland UniversitySaarbrückenGermany

Personalised recommendations