Advertisement

International Journal of Computer Vision

, Volume 96, Issue 3, pp 280–289 | Cite as

Real-Time Facial Feature Tracking on a Mobile Device

  • P. A. Tresadern
  • M. C. Ionita
  • T. F. Cootes
Article

Abstract

This paper presents an implementation of the Active Appearance Model that is able to track a face on a mobile device in real-time. We achieve this performance by discarding an explicit texture model, using fixed-point arithmetic for much of the computation, applying a sequence of models with increasing complexity, and exploiting a sparse basis projection via Haar-like features. Our results show that the Haar-like feature basis achieves similar performance to more traditional approaches while being more suitable for a mobile device. Finally, we discuss mobile applications of the system such as face verification, teleconferencing and human-computer interaction.

Keywords

Facial feature tracking Active Appearance Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batur, A. U., & Hayes, M. H. (2005). Adaptive active appearance models. IEEE Transactions on Medical Imaging, 14(11), 1707–1721. Google Scholar
  2. Bergen, J. R., Anandan, P., Hanna, J., & Hingorani, R. (1992). Hierarchical model-based motion estimation. In Proc. European conf. on computer vision (pp. 237–252). Google Scholar
  3. Cootes, T. F., & Taylor, C. J. (2001). On representing edge structure for model matching. In Proc. IEEE conf. on comp. vis. and patt. recog. Google Scholar
  4. Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active shape models—their training and application. Computer Vision and Image Understanding, 61(1), 38–59. CrossRefGoogle Scholar
  5. Cootes, T. F., Edwards, G., & Taylor, C. J. (1998). A comparative evaluation of active appearance model algorithms. In Proc. British machine vision conf. Google Scholar
  6. Cootes, T. F., Edwards, G. J., & Taylor, C. J. (1998). Active appearance models. In Proc. European conf. on computer vision. Google Scholar
  7. Cootes, T., Edwards, G., & Taylor, C. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681–685. CrossRefGoogle Scholar
  8. Crow, F. C. (1984). Summed-area tables for texture mapping. In Proc. conf. of ACM SIGGraph (vol. 18). Google Scholar
  9. Donner, R., Reitner, M., Langs, G., Peloschek, P., & Bischof, H. (2006). Fast active appearance model search using canonical correlation analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1690–1694. CrossRefGoogle Scholar
  10. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. MathSciNetzbMATHCrossRefGoogle Scholar
  11. Gao, X., Su, Y., Li, X., & Tao, D. (2010). A review of active appearance models. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews, 40(2), 145–158. CrossRefGoogle Scholar
  12. Gao, Y., Zhao, Q., Hao, A., Sezgin, T. M., & Dodgson, N. A. (2010). Automatic construction of 3D animatable facial avatars. Computer Animation and Virtual Worlds, 21, 343–354. Google Scholar
  13. Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society. Series B. Methodological, 53(2), 285–339. MathSciNetzbMATHGoogle Scholar
  14. Gross, R., Matthews, I., & Baker, S. (2005). Generic vs. person specific active appearance models. Image and Vision Computing, 23(12), 1080–1093. CrossRefGoogle Scholar
  15. Hou, X., Li, S. Z., Zhang, H., & Cheng, Q. (2001). Direct appearance models. In Proc. IEEE conf. on comp. vis. and patt. recog. Google Scholar
  16. Liang, L., Xiao, R., Wen, F., & Sun, J. (2008). Face alignment via component-based discriminative search. In Proc. European conf. on computer vision. Google Scholar
  17. Liu, X. (2009). Discriminative face alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11), 1941–1954. CrossRefGoogle Scholar
  18. Liu, C., Yuan, J., Torralba, A., Sivic, J., & Freeman, W. T. (2008). SIFT flow: dense correspondence across different scenes. In Proc. European conf. on computer vision (vol. 3, pp. 28–42). Google Scholar
  19. Matthews, I., & Baker, S. (2004). Active appearance models revisited. International Journal of Computer Vision, 26(10), 135–164. CrossRefGoogle Scholar
  20. Messer, K., Matas, J., Kittler, J., Luettin, J., & Maitre, G. (1999). XM2VTSDB: the extended M2VTS database. In Proc. int’l conf. on audio- and video-based biometric person authentication. Google Scholar
  21. Papenberg, N., Bruhn, A., Brox, T., Didas, S., & Weickert, J. (2006). Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision, 67(2), 141–158. CrossRefGoogle Scholar
  22. Saragih, J., & Goecke, R. (2006). Iterative error bound minimization for AAM alignment. In Proc. IEEE int’l conf. on patt. recog. Google Scholar
  23. Saragih, J., & Goecke, R. (2007). A nonlinear discriminative approach to AAM fitting. In Proc. IEEE int’l conf. on comp. vis. Google Scholar
  24. Scott, I. M., Cootes, T. F., & Taylor, C. J. (2003). Improving appearance model matching using local image structure. In Proc. int’l conf. on information processing in medical imaging. Google Scholar
  25. Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154. CrossRefGoogle Scholar
  26. Wu, H., Liu, X., & Doretto, G. (2008). Face alignment via boosted ranking model. In Proc. IEEE conf. on comp. vis. and patt. recog. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. A. Tresadern
    • 1
  • M. C. Ionita
    • 1
  • T. F. Cootes
    • 1
  1. 1.School of Cancer and Enabling Sciences, Stopford BuildingUniversity of ManchesterManchesterUK

Personalised recommendations