International Journal of Computer Vision

, Volume 94, Issue 3, pp 317–334 | Cite as

Predicting Articulated Human Motion from Spatial Processes

  • Søren HaubergEmail author
  • Kim Steenstrup Pedersen


We present a probabilistic interpretation of inverse kinematics and extend it to sequential data. The resulting model is used to estimate articulated human motion in visual data. The approach allows us to express the prior temporal models in spatial limb coordinates, which is in contrast to most recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial coordinates, the approach allows us to construct high quality application specific motion models with little effort. Thirdly, the state space is a real vector space, which allows us to use off-the-shelf stochastic processes as motion models, which is rarely possible when working with joint angles. Fourthly, we avoid the problem of accumulated variance, where noise in one joint affects all joints further down the kinematic chains. All this combined allows us to more easily construct high quality motion models. In the evaluation, we show that an activity independent version of our model is superior to the corresponding state-of-the-art model. We also give examples of activity dependent models that would be hard to phrase directly in terms of joint angles.


Motion analysis Articulated human motion Articulated tracking Prediction Inverse kinematics Particle filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory formation. Brain, 105(2), 331–348. CrossRefGoogle Scholar
  2. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396. zbMATHCrossRefGoogle Scholar
  3. Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer. zbMATHGoogle Scholar
  4. Bregler, C., Malik, J., & Pullen, K. (2004). Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision, 56, 179–194. CrossRefGoogle Scholar
  5. Cappé, O., Godsill, S. J., & Moulines, E. (2007). An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5), 899–924. CrossRefGoogle Scholar
  6. Carreira-Perpinan, M. A., & Lu, Z. (2007). The Laplacian eigenmaps latent variable model. Journal of Machine Learning Research, 2, 59–66. Google Scholar
  7. Courty, N., & Arnaud, E. (2008). Inverse kinematics using sequential Monte Carlo methods. In Articulated motion and deformable objects: 5th international conference (pp. 1–10). New York: Springer. CrossRefGoogle Scholar
  8. Elgammal, A. M., & Lee, C. S. (2009). Tracking people on a torus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3), 520–538. CrossRefGoogle Scholar
  9. Engell-Nørregård, M., Hauberg, S., Lapuyade, J., Erleben, K., & Pedersen, K. S. (2009). Interactive inverse kinematics for monocular motion estimation. In Proceedings of VRIPHYS’09. Google Scholar
  10. Engell-Nørregård, M., Niebe, S., & Erleben, K. (2010). Local joint-limits using distance field cones in Euler angle space. In Computer graphics international. Google Scholar
  11. Erleben, K., Sporring, J., Henriksen, K., & Dohlmann, H. (2005). Physics based animation. New York: Charles River Media. Google Scholar
  12. Fletcher, T. P., Lu, C., Pizer, S. M., & Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23(8), 995–1005. CrossRefGoogle Scholar
  13. Ganesh, S. (2009). Analysis of goal-directed human actions using optimal control models. PhD thesis, EECS Dept., University of California, Berkeley. Google Scholar
  14. Grochow, K., Martin, S. L., Hertzmann, A., & Popović, Z. (2004). Style-based inverse kinematics. ACM Transactions on Graphics, 23(3), 522–531. CrossRefGoogle Scholar
  15. Hauberg, S., & Pedersen, K. S. (2011). Stick it! articulated tracking using spatial rigid object priors. In R. Kimmel, R. Klette, & A. Sugimoto (Eds.), Lecture notes in computer science: Vol. 6494. ACCV 2010 (pp. 758–769). Heidelberg: Springer. CrossRefGoogle Scholar
  16. Hauberg, S., Lapuyade, J., Engell-Nørregård, M., Erleben, K., & Pedersen, K. S. (2009). Three dimensional monocular human motion analysis in end-effector space. In D. Cremers et al. (Ed.), Energy minimization methods in computer vision and pattern recognition. LNCS (pp. 235–248). Berlin: Springer. CrossRefGoogle Scholar
  17. Hauberg, S., Sommer, S., & Pedersen, K. S. (2010). Gaussian-like spatial priors for articulated tracking. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), LNCS: Vol. 6311. ECCV 2010 (pp. 425–437). Berlin: Springer. CrossRefGoogle Scholar
  18. Herda, L., Urtasun, R., & Fua, P. (2004). Hierarchial implicit surface joint limits to constrain video-based motion capture. In T. Pajdla & J. Matas (Eds.), LCNS: Vol. 3022. Computer vision – ECCV 2004 (pp. 405–418). Berlin: Springer. CrossRefGoogle Scholar
  19. Horaud, R., Niskanen, M., Dewaele, G., & Boyer, E. (2009). Human motion tracking by registering an articulated surface to 3d points and normals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 158–163. CrossRefGoogle Scholar
  20. Kerlow, I. V. (2003). Art of 3D computer animation and effects (3rd edn.). New York: Wiley. Google Scholar
  21. Kjellström, H., Kragić, D., & Black, M. J. (2010). Tracking people interacting with objects. In CVPR ’10: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition. Google Scholar
  22. Knossow, D., Ronfard, R., & Horaud, R. (2008). Human motion tracking with a kinematic parameterization of extremal contours. International Journal of Computer Vision, 79(2), 247–269. CrossRefGoogle Scholar
  23. Lu, Z., Carreira-Perpinan, M., & Sminchisescu, C. (2008). People Tracking with the Laplacian Eigenmaps Latent Variable Model. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems 20 (pp. 1705–1712). Cambridge: MIT Press. Google Scholar
  24. Moeslund, T. B., Hilton, A., & Krüger, V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2), 90–126. CrossRefGoogle Scholar
  25. Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223–227. CrossRefGoogle Scholar
  26. Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press. zbMATHGoogle Scholar
  27. Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer Series in Operations Research. Berlin: Springer. Google Scholar
  28. Poon, E., & Fleet, D. J. (2002). Hybrid Monte Carlo filtering: edge-based people tracking. In IEEE workshop on motion and video computing (pp. 151–158). CrossRefGoogle Scholar
  29. Poppe, R. (2007). Vision-based human motion analysis: An overview. Computer Vision and Image Understanding, 108(1–2), 4–18. CrossRefGoogle Scholar
  30. Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning. Cambridge: MIT Press. zbMATHGoogle Scholar
  31. Rosenhahn, B., Schmaltz, C., Brox, T., Weickert, J., Cremers, D., & Seidel, H. P. (2008). Markerless motion capture of man-machine interaction. In IEEE computer society conference on computer vision and pattern recognition (pp. 1–8). Google Scholar
  32. Salzmann, M., & Urtasun, R. (2010). Combining discriminative and generative methods for 3d deformable surface and articulated pose reconstruction. In Proceedings of CVPR’10. Google Scholar
  33. Sidenbladh, H., Black, M. J., & Fleet, D. J. (2000). Stochastic tracking of 3d human figures using 2d image motion. In Lecture notes in computer science 1843: Vol. II. Proceedings of ECCV’00 (pp. 702–718). Google Scholar
  34. Sminchisescu, C., & Jepson, A. (2004). Generative modeling for continuous non-linearly embedded visual inference. In ICML’04: Proceedings of the twenty-first international conference on machine learning (pp. 759–766). New York: ACM. Google Scholar
  35. Sminchisescu, C., & Triggs, B. (2003). Kinematic jump processes for monocular 3D human tracking. In IEEE international conference on computer vision and pattern recognition (pp. 69–76). Google Scholar
  36. Tournier, M., Wu, X., Courty, N., Arnaud, E., & Reveret, L. (2009). Motion compression using principal geodesics analysis. Computer Graphics Forum, 28(2), 355–364. CrossRefGoogle Scholar
  37. Urtasun, R., Fleet, D. J., Hertzmann, A., & Fua, P. (2005). Priors for people tracking from small training sets. In Tenth IEEE international conference on computer vision: Vol. 1. (pp. 403–410). Google Scholar
  38. Urtasun, R., Fleet, D. J., & Fua, P. (2006). 3D People tracking with Gaussian process dynamical models. In CVPR ’06: Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition (pp. 238–245). Google Scholar
  39. Urtasun, R., Fleet, D. J., Geiger, A., Popović, J., Darrell, T. J., & Lawrence, N. D. (2008). Topologically-constrained latent variable models. In ICML ’08: Proceedings of the 25th international conference on machine learning (pp. 1080–1087). New York: ACM. CrossRefGoogle Scholar
  40. Wang, J. M., Fleet, D. J., & Hertzmann, A. (2008). Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 283–298. CrossRefGoogle Scholar
  41. Zhao, J., & Badler, N. I. (1994). Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Transactions on Graphics, 13(4), 313–336. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dept. of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations