International Journal of Computer Vision

, Volume 93, Issue 3, pp 293–318 | Cite as

A Continuum Mechanical Approach to Geodesics in Shape Space

  • Benedikt WirthEmail author
  • Leah Bar
  • Martin Rumpf
  • Guillermo Sapiro


In this paper concepts from continuum mechanics are used to define geodesic paths in the space of shapes, where shapes are implicitly described as boundary contours of objects. The proposed shape metric is derived from a continuum mechanical notion of viscous dissipation. A geodesic path is defined as the family of shapes such that the total amount of viscous dissipation caused by an optimal material transport along the path is minimized. The approach can easily be generalized to shapes given as segment contours of multi-labeled images and to geodesic paths between partially occluded objects. The proposed computational framework for finding such a minimizer is based on the time discretization of a geodesic path as a sequence of pairwise matching problems, which is strictly invariant with respect to rigid body motions and ensures a 1–1 correspondence along the induced flow in shape space. When decreasing the time step size, the proposed model leads to the minimization of the actual geodesic length, where the Hessian of the pairwise matching energy reflects the chosen Riemannian metric on the underlying shape space. If the constraint of pairwise shape correspondence is replaced by the volume of the shape mismatch as a penalty functional, one obtains for decreasing time step size an optical flow term controlling the transport of the shape by the underlying motion field. The method is implemented via a level set representation of shapes, and a finite element approximation is employed as spatial discretization both for the pairwise matching deformations and for the level set representations. The numerical relaxation of the energy is performed via an efficient multi-scale procedure in space and time. Various examples for 2D and 3D shapes underline the effectiveness and robustness of the proposed approach.


Riemannian shape space Geodesics Variational time discretization Viscous fluids Rigid body motion invariance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. A. (1975). Sobolev spaces. New York: Academic Press. zbMATHGoogle Scholar
  2. Ball, J. M. (1977). Convexity conditions and existence theorems in nonlinear elasticity. Archive of Rational Mechanics and Analysis, 63, 337–403. CrossRefzbMATHGoogle Scholar
  3. Ball, J. M. (1981). Global invertibility of Sobolev functions and the interpenetration of matter. Proceedings of the Royal Society of Edinburgh A, 88, 315–328. zbMATHGoogle Scholar
  4. Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157. CrossRefGoogle Scholar
  5. Black, M. J., & Anandan, P. (1993). A framework for the robust estimation of optical flow. In Fourth international conference on computer vision, ICCV-93 (pp. 231–236). Google Scholar
  6. Bornemann, F. A., & Deuflhard, P. (1996). The cascadic multigrid method for elliptic problems. Numerische Mathematik, 75(2), 135–152. CrossRefzbMATHMathSciNetGoogle Scholar
  7. Bronstein, A., Bronstein, M., & Kimmel, R. (2008). Monographs in computer science. Numerical geometry of non-rigid shapes. Berlin: Springer. zbMATHGoogle Scholar
  8. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79. CrossRefzbMATHGoogle Scholar
  9. Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277. CrossRefzbMATHGoogle Scholar
  10. Charpiat, G., Faugeras, O., & Keriven, R. (2005). Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics, 5(1), 1–58. CrossRefzbMATHMathSciNetGoogle Scholar
  11. Charpiat, G., Maurel, P., Pons, J.-P., Keriven, R., & Faugeras, O. (2007). Generalized gradients: priors on minimization flows. International Journal of Computer Vision, 73(3), 325–344. CrossRefGoogle Scholar
  12. Chipot, M., & Evans, L. C. (1986). Linearization at infinity and Lipschitz estimates in the calculus of variations. Proceedings of the Royal Society of Edinburgh A, 102(3–4), 291–303. zbMATHMathSciNetGoogle Scholar
  13. Chorin, A. J., & Marsden, J. E. (1990). Texts in applied mathematics: Vol. 4. A mathematical introduction to fluid mechanics. Berlin: Springer. zbMATHGoogle Scholar
  14. Ciarlet, P. G. (1988) Three-dimensional elasticity. Amsterdam: Elsevier zbMATHGoogle Scholar
  15. Delfour, M. C., & Zolésio, J. P. (2001). Adv. des. control: Vol. 4. Geometries and shapes: analysis, differential calculus and optimization. Philadelphia: SIAM. zbMATHGoogle Scholar
  16. do Carmo, M. P. (1992). Riemannian geometry. Boston: Birkhäuser. zbMATHGoogle Scholar
  17. Droske, M., & Rumpf, M. (2007). Multi scale joint segmentation and registration of image morphology. IEEE Transactions on Pattern Analysis, 29(12), 2181–2194. CrossRefGoogle Scholar
  18. Duci, A., Yezzi, A. J., Mitter, S. K., & Soatto, S. (2006). Region matching with missing parts. Image and Vision Computing, 24, 271–277. CrossRefGoogle Scholar
  19. Dupuis, D., Grenander, U., & Miller, M. I. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, 56, 587–600. zbMATHMathSciNetGoogle Scholar
  20. Eckstein, I., Pons, J., Tong, Y., Kuo, C., & Desbrun, M. (2007). Generalized surface flows for mesh processing. In Eurographics symposium on geometry processing. Google Scholar
  21. Fletcher, P., & Whitaker, R. (2006). Riemannian metrics on the space of solid shapes. In MICCAI 2006: Med Image Comput Assist Interv. Google Scholar
  22. Fuchs, M., Jüttler, B., Scherzer, O., & Yang, H. Shape metrics based on elastic deformations. Journal of Mathematical Imaging and Vision, to appear, 2009. Google Scholar
  23. Glaunès, J., Qiu, A., Miller, M. I., & Younes, L. (2008). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision, 80(3), 317–336. CrossRefGoogle Scholar
  24. Gromov, M. (1999). Progress in mathematics: Vol. 152. Metric structures for Riemannian and non-Riemannian spaces. Boston: Birkhäuser. zbMATHGoogle Scholar
  25. Kapur, T., Yezzi, L., & Zöllei, L. (2001). A variational framework for joint segmentation and registration. In IEEE CVPR—MMBIA (pp. 44–51). Google Scholar
  26. Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121. CrossRefzbMATHMathSciNetGoogle Scholar
  27. Kilian, M., Mitra, N. J., & Pottmann, H. (2007). Geometric modeling in shape space. ACM Transactions on Graphics, 26, 64-1–64-8. CrossRefGoogle Scholar
  28. Klassen, E., Srivastava, A., Mio, W., & Joshi, S. (2004). Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis, 26(3), 372–383. CrossRefGoogle Scholar
  29. Liu, X., Shi, Y., Dinov, I., & Mio, W. (2010). A computational model of multidimensional shape. doi: 10.1007/s11263-010-0323-0
  30. Luckhaus, S., & Sturzenhecker, T. (1995). Implicit time discretization for the mean curvature flow equation. Calculus of Variations, 3, 253–271. zbMATHMathSciNetGoogle Scholar
  31. Manay, S., Cremers, D., Hong, B.-W., Yezzi, A. J., & Soatto, S. (2006). Integral invariants for shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1602–1618. CrossRefGoogle Scholar
  32. Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5, 313–347. CrossRefzbMATHMathSciNetGoogle Scholar
  33. Michor, P. W., & Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society, 8, 1–48. CrossRefzbMATHMathSciNetGoogle Scholar
  34. Michor, P. W., Mumford, D., Shah, J., & Younes, L. (2008). A metric on shape space with explicit geodesics. Rendiconti Lincei. Matematica Applicazioni, 9, 25–57. MathSciNetGoogle Scholar
  35. Miller, M. I., & Younes, L. (2001). Group actions, homeomorphisms and matching: a general framework. International Journal of Computer Vision, 41(1–2), 61–84. CrossRefzbMATHGoogle Scholar
  36. Miller, M. I., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405. CrossRefGoogle Scholar
  37. Nečas, J., & Šilhavý, M. (1991). Multipolar viscous fluids. Quarterly of Applied Mathematics, 49(2), 247–265. zbMATHMathSciNetGoogle Scholar
  38. Schmidt, F., Clausen, M., & Cremers, D. (2006). Shape matching by variational computation of geodesics on a manifold. Lecture notes in computer science: Vol. 4174. Pattern recognition (pp. 142–151). CrossRefGoogle Scholar
  39. Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Proceedings of the shape modeling international 2004, Genova (pp. 167–178). CrossRefGoogle Scholar
  40. Sundaramoorthi, G., Yezzi, A., & Mennucci, A. (2007). Sobolev active contours. International Journal of Computer Vision, 73(3), 345–366. CrossRefGoogle Scholar
  41. Trouvé, A., & Younes, L. (2005). Metamorphoses through Lie group action. Foundations of Computational Mathematics, 5(2), 173–198. CrossRefzbMATHMathSciNetGoogle Scholar
  42. Truesdell, C., & Noll, W. (2004). The non-linear field theories of mechanics. Berlin: Springer. Google Scholar
  43. Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In Lecture notes in computer science: Vol. 3565. IPMI 2005: Information processing in medical imaging (pp. 381–392). CrossRefGoogle Scholar
  44. Vese, L., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3), 271–293. CrossRefzbMATHGoogle Scholar
  45. Yezzi, A. J., & Mennucci, A. (2005). Conformal metrics and true “gradient flows” for curves. In ICCV 2005: Proceedings of the 10th IEEE international conference on computer vision (pp. 913–919). Google Scholar
  46. Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal on Applied Mathematics, 58, 565–586. CrossRefzbMATHMathSciNetGoogle Scholar
  47. Younes, L., Qiu, A., Winslow, R. L., & Miller, M. I. (2008). Transport of relational structures in groups of diffeomorphisms. Journal of Mathematical Imaging and Vision, 32(1), 41–56. CrossRefMathSciNetGoogle Scholar
  48. Zhao, H.-K., Chan, T., Merriman, B., & Osher, S. (1996). A variational level set approach to multiphase motion. Journal of Computational Physics, 127, 179–195. CrossRefzbMATHMathSciNetGoogle Scholar
  49. Zhu, L., Yang, Y., Haker, S., & Tannenbaum, A. (2007). An image morphing technique based on optimal mass preserving mapping. IEEE Transactions on Image Processing, 16(6), 1481–1495. CrossRefMathSciNetGoogle Scholar
  50. Zolésio, J.-P. (2004). Shape topology by tube geodesic. In IFIP conference on system modeling and optimization No 21 (pp. 185–204). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Benedikt Wirth
    • 1
    Email author
  • Leah Bar
    • 2
  • Martin Rumpf
    • 1
  • Guillermo Sapiro
    • 2
  1. 1.Institute for Numerical SimulationUniversity of BonnBonnGermany
  2. 2.Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations