International Journal of Computer Vision

, Volume 94, Issue 1, pp 36–53 | Cite as

Capturing Village-level Heritages with a Hand-held Camera-Laser Fusion Sensor

  • Yunsu Bok
  • Yekeun Jeong
  • Dong-Geol Choi
  • In So Kweon
Article

Abstract

Preserving a heritage as a digital archive is as important as preserving its physical structure. The digital preservation is essential for massive heritages which are often defenceless against various types of destruction and require frequent restorations. However, capturing heritages gets exceedingly harder as their scale grows. In this paper, we present a novel approach to reconstruct a massive-scale structure using a hand-held fusion sensor system. The approach includes new methods on calibration, motion estimation, and accumulated error reduction. The proposed sensor system consists of four cameras and two 2D laser scanners to obtain a wide field-of-view. A new calibration method successfully achieves a much lower reprojection error compared to the previous method. A motion estimation method provides accurate and robust relative poses by fully utilizing plenty observations. At the last stage, the accumulated error reduction removes the drift occurred over tens of thousands frames by adopting weak GPS prior and loop closing. Therefore the system is able to capture and geo-register large heritage architectures of square kilometers size. Furthermore, because no assumption or restriction is made, the user can freely move the system and can control the level of detail of the digital heritage without any effort. To demonstrate the performance, we have captured several important Korean heritages including Gyeongbok-Gung, the royal palace of Korea. The experimental result shows that the estimated route fits Google’s satellite image and DGPS data while the detailed appearances of representative constructions are captured and preserved well.

Keywords

Sensor fusion Large-scale 3D reconstruction e-Heritage Camera-laser calibration Ego-motion estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., & Szeliski, R. (2009). Building Rome in a day. In Proceedings of the IEEE international conference on computer vision (pp. 72–79). Google Scholar
  2. Banno, A., Masuda, T., Oishi, T., & Ikeuchi, K. (2008). Flying laser range sensor for large-scale site-modeling and its applications in Bayon digital archival project. International Journal of Computer Vision, 78(2–3), 207–222. CrossRefGoogle Scholar
  3. Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. CrossRefGoogle Scholar
  4. Bok, Y., Hwang, Y., & Kweon, I. S. (2007). Accurate motion estimation and high-precision 3d reconstruction by sensor fusion. In Proceedings of the IEEE international conference on robotics and automation (pp. 4721–4726). Google Scholar
  5. Collins, R. T. (1996). A space-sweep approach to true multi-image matching. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 358–363). Google Scholar
  6. Cornelis, N., Leibe, B., Cornelis, K., & Gool, L. V. (2008). 3D urban scene modeling integrating recognition and reconstruction. International Journal of Computer Vision, 78(2–3), 121–141. CrossRefGoogle Scholar
  7. Fischler, M., & Bolles, R. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. MathSciNetCrossRefGoogle Scholar
  8. Frueh, C., Jain, S., & Zakhor, A. (2005). Data processing algorithms for generating textured 3d building facade meshes from laser scans and camera images. International Journal of Computer Vision, 61(2), 159–184. CrossRefGoogle Scholar
  9. Haralick, R., Lee, C. N., Ottenberg, K., & Nölle, M. (1994). Review and analysis of solutions of the three point perspective pose estimation problem. International Journal of Computer Vision, 13(3), 331–356. CrossRefGoogle Scholar
  10. Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics, 164–168. Google Scholar
  11. Nistér, D. (2004). A minimal solution to the generalised 3-point pose problem. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 560–567). Google Scholar
  12. Pfaff, P., et al. (2007). Towards mapping of cities. In Proceedings of the IEEE international conference on robotics and automation (pp. 4807–4813). Google Scholar
  13. Pollefeys, M., et al. (2008). Detailed real-time, urban 3D reconstruction from video. International Journal of Computer Vision, 78(2–3), 143–167. CrossRefGoogle Scholar
  14. Sharp, G. C., Lee, S. W., & Wehe, D. K. (2004). Multiview registration of 3d scenes by minimizing error between coordinate frames. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 1037–1050. CrossRefGoogle Scholar
  15. Shi, J., & Tomasi, C. (1994). Good features to track. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 593–600). Google Scholar
  16. Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics, 835–846. Google Scholar
  17. Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the IEEE international conference on computer vision (pp. 666–673). Google Scholar
  18. Zhang, Q., & Pless, R. (2004). Extrinsic calibration of a camera and laser range finder (improves camera calibration). In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2301–2306). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yunsu Bok
    • 1
  • Yekeun Jeong
    • 1
  • Dong-Geol Choi
    • 1
  • In So Kweon
    • 1
  1. 1.Department of Electrical EngineeringKAISTDaejeonSouth Korea

Personalised recommendations