Advertisement

International Journal of Computer Vision

, Volume 91, Issue 2, pp 175–199 | Cite as

A Generic Error Model and Its Application to Automatic 3D Modeling of Scenes Using a Catadioptric Camera

  • Maxime Lhuillier
Article

Abstract

Recently, it was suggested that structure-from-motion be solved using generic tools which are exploitable for any kind of camera. The same challenge applies for the automatic reconstruction of 3D models from image sequences, which includes structure-from-motion. This article is a new step in this direction. First, a generic error model is introduced for central cameras. Second, this error model is systematically used in the 3D modeling process. The experiments are carried out in a context which has rarely been addressed until now: the automatic 3D modeling of scenes using a catadioptric camera.

Keywords

Image based modeling Catadioptric camera Error propagation Automatic system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarzadeh, A., Frahm, J., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Merell, P., Phelps, M., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H., Nister, D., & Pollefeys, M. (2006). Towards urban 3d reconstruction from video. In 3DPTV’06. Google Scholar
  2. Barron, D. F. J., & Beauchemin, S. (1992). Performance of optical flow techniques. International Journal of Computer Vision, 12(1). Google Scholar
  3. Bunschoten, R., & Krose, B. (2003). Robust scene reconstruction from an omnidirectional vision system. IEEE Transactions on Robotics and Automation, 351–357. Google Scholar
  4. Curless, B., & Levoy, M. (1996). A volumetric method for building complex models from range images. SIGGRAPH, 30. Google Scholar
  5. Daniilidis, K. (2010). The page of omnidirectional vision. www.cis.upenn.edu/~kostas/omni.html.
  6. Doubek, P., & Svoboda, T. (2002). Reliable 3d reconstruction from a few catadioptric images. In OMNIVIS’02. Google Scholar
  7. Evers-Senne, J., Woetzel, J., & Koch, R. (2004) Modelling and rendering of complex scenes with a multi-camera rig. In CVMP’04. Google Scholar
  8. Faugeras, O., Long, Q., & Papadopoulos, T. (2001). Geometry of multiple images. Cambridge: MIT Press. zbMATHGoogle Scholar
  9. Fleck, S., Busch, F., Biber, P., Strasser, W., & Andreasson, H. (2005). Omnidirectional 3d modeling on a mobile robot using graph cuts. In ICRA’05. Google Scholar
  10. Grossberg, M., & Nayar, S. (2001). A general imaging model and a method for finding its parameters. In ICCV’01. Google Scholar
  11. Hartley, R., & Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  12. Kang, S., & Szeliski, R. (1997). 3-d scene data recovery using omnidirectional multibaseline stereo. International Journal of Computer Vision, 25(2). Google Scholar
  13. Kannala, J., & Brandt, S. (2006). A generic camera model and calibration method for conventional, wide-angle and fish-eye lenses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8). Google Scholar
  14. Kolmogorov, V., & Zabih, R. (2001). Computing visual correspondences with occlusions using graph-cuts. In ICCV’01. Google Scholar
  15. Lhuillier, M. (2006). Effective and generic structure from motion using angular error. In ICPR’06. Google Scholar
  16. Lhuillier, M. (2007). Toward flexible 3d modeling using a catadioptric camera. In CVPR’07. Google Scholar
  17. Lhuillier, M. (2008a). Automatic scene structure and camera motion using a catadioptric system. Computer Vision and Image Understanding, 109(2). Google Scholar
  18. Lhuillier, M. (2008b). Toward automatic 3d modeling of scenes using a generic camera model. In CVPR’08. Google Scholar
  19. Lhuillier, M., & Quan, L. (2002). Match propagation for image-based modeling and rendering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8). Google Scholar
  20. Li, H., Hartley, R., & Kim, J. (2008). Linear approach to motion estimation using generalized camera model. In CVPR’08. Google Scholar
  21. Micusik, B., & Pajdla, T. (2006). Structure from motion with wide circular field of view cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7). Google Scholar
  22. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., & Sayd, P. (2009). Generic and real time structure from motion using local bundle adjustment. Image and Vision Computing, 27. Google Scholar
  23. Nister, D., & Stewenius, H. (2007). A minimal solution to the generalized 3-point pose problem. Journal of Mathematical Imaging and Vision, 27(1). Google Scholar
  24. Okutomi, M., & Kanade, T. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4). Google Scholar
  25. Pless, R. (2003). Using many cameras as one. In CVPR’03. Google Scholar
  26. Pollefeys, M., Gool, L. V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., & Koch, R. (2004). Visual modeling with a hand-held camera. International Journal of Computer Vision, 59(3). Google Scholar
  27. Ramalingam, S. L. S., & Sturm, P. (2006). A generic structure-from-motion framework. Computer Vision and Image Understanding, 103(3). Google Scholar
  28. Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(2). Google Scholar
  29. Schindler, K., & Bischof, H. (2003). On robust regression in photogrammetric point clouds. In DAGM’03 (also LNCS 2781). Google Scholar
  30. Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In CVPR’06. Google Scholar
  31. Soucy, M., & Laurendeau, D. (1995). A general surface approach to the integration of a set of range views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(4). Google Scholar
  32. Strelow, D., Mischler, J., Singh, S., & Herman, H. (2001). Extending shape-from-motion estimation to noncentral omnidirectional camera. In IROS’01. Google Scholar
  33. Tissot, N. (2010). Tissot’s indicatrix. Wikipedia. Google Scholar
  34. Torii, A., Havlena, M., Pajdla, T., & Leibe, B. (2008). Measuring camera translation by the dominant apical angle. In CVPR’08. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.LASMEA UMR 6602 UBP/CNRSAubière CedexFrance

Personalised recommendations