Advertisement

International Journal of Computer Vision

, Volume 90, Issue 3, pp 350–368 | Cite as

Euclidean Upgrading from Segment Lengths

  • José I. Ronda
  • Antonio ValdésEmail author
Article

Abstract

We address the problem of the recovery of Euclidean structure of a projectively distorted n-dimensional space from the knowledge of the, possibly diverse, lengths of a set of segments. This problem is relevant, in particular, for Euclidean reconstruction with uncalibrated cameras, extending previously known results in the affine setting. The key concept is the Quadric of Segments (QoS), defined in a higher-dimensional space by the set of segments of a fixed length, from which Euclidean structure can be obtained in closed form. We have intended to make a thorough study of the properties of the QoS, including the determination of the minimum number of segments of arbitrary length that determine it and its relationship with the standard geometric objects associated to the Euclidean structure of space. Explicit formulas are given to obtain the dual absolute quadric and the absolute quadratic complex from the QoS. Experiments with real and synthetic images evaluate the performance of the techniques.

Keywords

Camera calibration Euclidean upgrading 3D reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M., & Davis, L. S. (2003). Camera calibration using spheres: A semi-definite programming approach. In ICCV ’03: Proceedings of the ninth IEEE international conference on computer vision (p. 782). Washington, DC, USA. Los Alamitos: IEEE Computer Society. CrossRefGoogle Scholar
  2. Bayro-Corrochano, E., & Rosenhahn, B. (2002). A geometric approach for the analysis and computation of the intrinsic camera parameters. Pattern Recognition, 35(1), 169–186. zbMATHCrossRefGoogle Scholar
  3. Harris, J. (1995). Algebraic geometry, a first course. Berlin: Springer. Google Scholar
  4. Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision, 2nd edn. Cambridge: Cambridge University Press. Google Scholar
  5. Hartley, R. I. (1992). Estimation of relative camera positions for uncalibrated cameras. In Proc. European Conference on Computer Vision (pp. 579–587). London, UK. Berlin: Springer. Google Scholar
  6. Hartley, R. I., Hayman, E., de Agapito, L., & Reid, I. (1999). Camera calibration and the search for infinity. IEEE International Conference on Computer Vision, 1, 510. CrossRefGoogle Scholar
  7. Heyden, A., & Åström, K. (1997). Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In Proc. IEEE conference on computer vision and pattern recognition, New York, USA. Google Scholar
  8. Kahl, F., Triggs, B., & Åström, K. (2000). Critical motions for auto-calibration when some intrinsic parameters can vary. Journal of Mathematical Imaging and Vision, 13(2), 131–146. zbMATHCrossRefMathSciNetGoogle Scholar
  9. Liebowitz, D., & Carlsson, S. (2003). Uncalibrated motion capture exploiting articulated structure constraints. International Journal on Computer Vision, 51(3), 171–187. CrossRefGoogle Scholar
  10. Maybank, S. J., & Faugeras, O. D. (1992). A theory of self-calibration of a moving camera. International Journal on Computer Vision, 8(2), 123–151. CrossRefGoogle Scholar
  11. Pollefeys, M., & Gool, L. V. (1997). A stratified approach to metric self-calibration. In Proc. of the IEEE conference on computer vision and pattern recognition (pp. 407–412), June 1997. Google Scholar
  12. Ponce, J. (2001). On computing metric upgrades of projective reconstructions under the rectangular pixel assumption. In Second European workshop on 3D structure from multiple images of large-scale environments (pp. 52–67). London, UK. Berlin: Springer. Google Scholar
  13. Ponce, J., McHenry, K., Papadopoulo, T., Teillaud, M., & Triggs, B. (2005). On the absolute quadratic complex and its application to autocalibration. In Proc. IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 780–787). Washington, DC, USA. Google Scholar
  14. Pribanic, T., Sturm, P., & Peharec, S. (2009). Wand-based calibration of 3d kinematic system. IET-CV, 3(3), 124–129. CrossRefGoogle Scholar
  15. Roe, E. D. Jr. (1897). On the circular points at infinity. The American Mathematical Monthly, 4(5), 132–145. CrossRefMathSciNetGoogle Scholar
  16. Ronda, J. I., Gallego, G., & Valdés, A. (2005). Camera autocalibration using Plücker coordinates. In International conference on image processing (Vol. 3, pp. 800–803), Genoa, Italy. Google Scholar
  17. Ronda, J. I., Valdés, A., & Gallego, G. (2008). Line geometry and camera autocalibration. Journal of Mathematical Imaging and Vision, 32(2), 193–214. CrossRefMathSciNetGoogle Scholar
  18. Seo, Y., & Heyden, A. (2000). Auto-calibration from the orthogonality constraints. In Proc. international conference on pattern recognition (Vol. 01, pp. 1067–1071), Los Alamitos, CA, USA. Google Scholar
  19. Sturm, P. (1997). Critical motion sequences for monocular self-calibration and uncalibrated euclidean reconstruction. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 0, 1100. Google Scholar
  20. Tresadern, P. A., & Reid, I. D. (2008). Camera calibration from human motion. Image and Vision Computing, 26(6), 851–862. CrossRefGoogle Scholar
  21. Triggs, B. (1997). Autocalibration and the absolute quadric. In Proc. of the IEEE conference on computer vision and pattern recognition (pp. 609–614), Puerto Rico, USA, June 1997. Google Scholar
  22. Tsai, R. Y. (1992). A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. In Radiometry (pp. 221–244). Boston: Jones and Bartlett. Google Scholar
  23. Valdés, A., & Ronda, J. I. (2005). Camera autocalibration and the calibration pencil. Journal of Mathematical Imaging and Vision, 23(2), 167–174. CrossRefMathSciNetGoogle Scholar
  24. Valdés, A., Ronda, J. I., & Gallego, G. (2006). The absolute line quadric and camera autocalibration. International Journal of Computer Vision, 66(3), 283–303. CrossRefGoogle Scholar
  25. Wong, K.-Y. K., Mendonça, P. R., & Cipolla, R. (2003). Camera calibration from surfaces of revolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 147–161. CrossRefGoogle Scholar
  26. Zhang, H., Wong, K.-Y. K., & Zhang, G. (2007). Camera calibration from images of spheres. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 499–502. CrossRefMathSciNetGoogle Scholar
  27. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330–1334. CrossRefGoogle Scholar
  28. Zhang, Z. (2004). Camera calibration with one-dimensional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 892–899. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Grupo de Tratamiento de ImágenesUniversidad Politécnica de MadridMadridSpain
  2. 2.Dep. de Geometría y TopologíaUniversidad Complutense de MadridMadridSpain

Personalised recommendations