International Journal of Computer Vision

, Volume 90, Issue 2, pp 255–266 | Cite as

Population Shape Regression from Random Design Data

  • Brad C. Davis
  • P. Thomas Fletcher
  • Elizabeth Bullitt
  • Sarang Joshi


Regression analysis is a powerful tool for the study of changes in a dependent variable as a function of an independent regressor variable, and in particular it is applicable to the study of anatomical growth and shape change. When the underlying process can be modeled by parameters in a Euclidean space, classical regression techniques (Hardle, Applied Nonparametric Regression, 1990; Wand and Jones, Kernel Smoothing, 1995) are applicable and have been studied extensively. However, recent work suggests that attempts to describe anatomical shapes using flat Euclidean spaces undermines our ability to represent natural biological variability (Fletcher et al., IEEE Trans. Med. Imaging 23(8), 995–1005, 2004; Grenander and Miller, Q. Appl. Math. 56(4), 617–694, 1998).

In this paper we develop a method for regression analysis of general, manifold-valued data. Specifically, we extend Nadaraya-Watson kernel regression by recasting the regression problem in terms of Fréchet expectation. Although this method is quite general, our driving problem is the study anatomical shape change as a function of age from random design image data.

We demonstrate our method by analyzing shape change in the brain from a random design dataset of MR images of 97 healthy adults ranging in age from 20 to 79 years. To study the small scale changes in anatomy, we use the infinite dimensional manifold of diffeomorphic transformations, with an associated metric. We regress a representative anatomical shape, as a function of age, from this population.


Spatio-temporal shape analysis Kernel regression Deformable atlas building 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beg, M., Miller, M., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2). Google Scholar
  2. Beg, M. F. (2003). Variational and computational methods for flows of diffeomorphisms in image matching and growth in computational anatomy. PhD thesis, The Johns Hopkins University. Google Scholar
  3. Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157. CrossRefGoogle Scholar
  4. Bhattacharya, R., & Patrangenaru, V. (2002). Nonparametric estimation of location and dispersion on Riemannian manifolds. Journal of Statistical Planning and Inference, 108, 23–36. zbMATHCrossRefMathSciNetGoogle Scholar
  5. Bhattacharya, R., & Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds I. Annals of Statistics, 31(1), 1–29. zbMATHCrossRefMathSciNetGoogle Scholar
  6. Bingham, C. (1974). An antipodally symmetric distribution on the sphere. The Annals of Statistics, 2(6), 1201–1225. zbMATHCrossRefMathSciNetGoogle Scholar
  7. Buss, S. R., & Fillmore, J. P. (2001). Spherical averages and applications to spherical splines and interpolation. ACM Transactions on Graphics, 20(2), 95–126. CrossRefGoogle Scholar
  8. Clatz, O., Sermesant, M., Bondiau, P. Y., Delingette, H., Warfield, S. K., Malandain, G., & Ayache, N. (2005). Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with mass effect. IEEE Transactions on Medical Imaging, 24(10), 1334–1346. CrossRefGoogle Scholar
  9. Dupuis, P., & Grenander, U. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, LVI(3), 587–600. MathSciNetGoogle Scholar
  10. Fletcher, P. T., Joshi, S., Ju, C., & Pizer, S. M. (2004). Principal geodesic analysis for the study of nonliner statistics of shape. IEEE Transactions on Medical Imaging, 23(8), 995–1005. CrossRefGoogle Scholar
  11. Fréchet, M. (1948). Les elements aleatoires de nature quelconque dans un espace distancie. Annales de L’Institut Henri Poincare, 10, 215–310. Google Scholar
  12. Grenander, U., & Miller, M. I. (1998). Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, 56(4), 617–694. zbMATHMathSciNetGoogle Scholar
  13. Guttmann, C., Jolesz, F., Kikinis, R., Killiany, R., Moss, M., Sandor, T., & Albert, M. (1998). White matter changes with normal aging. Neurology, 50(4), 972–978. Google Scholar
  14. Hall, P., & Marron, J. S. (1991). Local minima in cross-validation functions. Journal of the Royal Statistical Society, Series B, 53(1), 245–252. zbMATHMathSciNetGoogle Scholar
  15. Hardle, W. (1990). Applied nonparametric regression. Cambridge: Cambridge University Press. Google Scholar
  16. Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91(433), 401–407. zbMATHCrossRefMathSciNetGoogle Scholar
  17. Joshi, S., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23, S151–S160. (Supplemental issue on Mathematics in Brain Imaging). CrossRefGoogle Scholar
  18. Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370. zbMATHCrossRefMathSciNetGoogle Scholar
  19. Jupp, P., & Mardia, K. (1989). A unified view of the theory of directional statistics, 1975–1988. International Statistical Review, 57(3), 261–294. zbMATHCrossRefGoogle Scholar
  20. Jupp, P. E., & Kent, J. T. (1987). Fitting smooth paths to spherical data. Applied Statistics, 36(1), 34–46. zbMATHCrossRefMathSciNetGoogle Scholar
  21. Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 30, 509–541. zbMATHCrossRefMathSciNetGoogle Scholar
  22. Kendall, D. G. (1984). Shape manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 18–121. Google Scholar
  23. Le, H., & Kendall, D. (1993). The Riemannian structure of Euclidean shape spaces: A novel environment for statistics. The Annals of Statistics, 21(3), 1225–1271. zbMATHCrossRefMathSciNetGoogle Scholar
  24. Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (1999). Automated model-based tissue classification of mr images of the brain. IEEE Transactions on Medical Imaging, 18(10), 897–908. CrossRefGoogle Scholar
  25. Loader, C. R. (1999). Bandwidth selection: Classical or plug-in? The Annals of Statistics, 27(2), 415–438. zbMATHCrossRefMathSciNetGoogle Scholar
  26. Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., & Joshi, S. (2006). Multi-modal image set registration and atlas formation. Medical Image Analysis, 10(3), 440–451. CrossRefGoogle Scholar
  27. Matsumae, M., Kikinis, R., Mórocz, I., Lorenzo, A., Sándor, T., Sándor, T., Albert, M., Black, P., & Jolesz, F. (1996). Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. Journal of Neurosurgery, 84, 982–991. CrossRefGoogle Scholar
  28. Miller, M. (2004). Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage, 23, S19–S33. CrossRefGoogle Scholar
  29. Miller, M., & Younes, L. (2001). Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41, 61–84. zbMATHCrossRefGoogle Scholar
  30. Miller, M., Banerjee, A., Christensen, G., Joshi, S., Khaneja, N., Grenander, U., & Matejic, L. (1997). Statistical methods in computational anatomy. Statistical Methods in Medical Research, 6, 267–299. CrossRefGoogle Scholar
  31. Miller, M. I., Trouve, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405. CrossRefGoogle Scholar
  32. Mortamet, B., Zeng, D., Gerig, G., Prastawa, M., & Bullitt, E. (2005). Effects of healthy aging measured by intracranial compartment volumes using a designed mr brain database. In Lecture notes in computer science (LNCS): Vol. 3749. Medical image computing and computer assisted intervention (MICCAI) (pp. 383–391). Google Scholar
  33. Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 10, 186–190. CrossRefGoogle Scholar
  34. Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25, 127–154. CrossRefMathSciNetGoogle Scholar
  35. Prastawa, M., Bullitt, E., Ho, S., & Gerig, G. (2004). A brain tumor segmentation framework based on outlier detection. Medical Image Analysis, 8(3), 275–283. CrossRefGoogle Scholar
  36. Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190–193. doi: 10.1038/35004593. CrossRefGoogle Scholar
  37. Trouvé, A., & Younes, L. (2005). Metamorphoses through lie group action. Foundations of Computational Mathematics, 5(2), 173–198. zbMATHCrossRefMathSciNetGoogle Scholar
  38. Wand, M. P., & Jones, M. C. (1995). Kernel smoothing : Vol. 60. Monographs on statistics and applied probability. London: Chapman & Hall/CRC. Google Scholar
  39. Watson, G. S. (1964). Smooth regression analysis. Sankhya, 26, 101–116. zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Brad C. Davis
    • 1
  • P. Thomas Fletcher
    • 2
  • Elizabeth Bullitt
    • 1
  • Sarang Joshi
    • 2
  1. 1.University of North Carolina at Chapel HillChapel HillUSA
  2. 2.University of UtahSalt Lake CityUSA

Personalised recommendations