International Journal of Computer Vision

, Volume 95, Issue 2, pp 154–179 | Cite as

Linear Regression and Adaptive Appearance Models for Fast Simultaneous Modelling and Tracking

  • Liam EllisEmail author
  • Nicholas Dowson
  • Jiri Matas
  • Richard Bowden


This work proposes an approach to tracking by regression that uses no hard-coded models and no offline learning stage. The Linear Predictor (LP) tracker has been shown to be highly computationally efficient, resulting in fast tracking. Regression tracking techniques tend to require offline learning to learn suitable regression functions. This work removes the need for offline learning and therefore increases the applicability of the technique. The online-LP tracker can simply be seeded with an initial target location, akin to the ubiquitous Lucas-Kanade algorithm that tracks by registering an image template via minimisation.

A fundamental issue for all trackers is the representation of the target appearance and how this representation is able to adapt to changes in target appearance over time. The two proposed methods, LP-SMAT and LP-MED, demonstrate the ability to adapt to large appearance variations by incrementally building an appearance model that identifies modes or aspects of the target appearance and associates these aspects to the Linear Predictor trackers to which they are best suited. Experiments comparing and evaluating regression and registration techniques are presented along with performance evaluations favourably comparing the proposed tracker and appearance model learning methods to other state of the art simultaneous modelling and tracking approaches.


Regression tracking Online appearance modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avidan, S. (2007). Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 261–271. CrossRefGoogle Scholar
  2. Baker, S., & Matthews, I (2004). Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer Vision, 56(3), 221–255. CrossRefGoogle Scholar
  3. Bray, M., Kohli, P., & Torr, P. H. S. (2006). Posecut: Simultaneous segmentation and 3d pose estimation of humans using dynamic graph-cuts. In ECCV (2) (pp. 642–655). Google Scholar
  4. Collins, R., Liu, Y., & Leordeanu, M. (2005). On-line selection of discriminative tracking features. IEEE Transaction on Pattern Analysis and Machine Intelligence, 27(1), 1631–1643. CrossRefGoogle Scholar
  5. Cootes, T. F., Edwards, G. J., & Taylor, C. J. (1998). Active appearance models. In ECCV (2) (pp. 484–498). Google Scholar
  6. Dowson, N., & Bowden, R. (2006). N-tier simultaneous modelling and tracking for arbitrary warps (Vol. II, p. 569). Google Scholar
  7. Dowson, N., & Bowden, R. (2008). Mutual information for Lucas-Kanade tracking (milk): An inverse compositional formulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 180–185. CrossRefGoogle Scholar
  8. Ellis, L., Matas, J., & Bowden, R. (2008). Online learning and partitioning of linear displacement predictors for tracking. In BMVC (1) (pp. 33–42). Google Scholar
  9. Grabner, H., Grabner, M., & Bischof, H. (2006). Real-time tracking via on-line boosting. In BMVC06 (pp. 47–56). British Machine Vision Association. Google Scholar
  10. Grabner, H., Leistner, C., & Bischof, H. (2008). Semi-supervised on-line boosting for robust tracking. In ECCV ’08: Proceedings of the 10th European conference on computer vision (pp. 234–247). Berlin: Springer. Google Scholar
  11. Hager, G. D., & Belhumeur, P. N. (1998). Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(10), 1025–1039. CrossRefGoogle Scholar
  12. Hansen, B. B., & Morse, B. S. (1999). Multiscale image registration using scale trace correlation. In IEEE computer society conference on computer vision and pattern recognition (Vol. 2, p. 2202). Google Scholar
  13. Isard, M., & Blake, A. (1998). Condensation—conditional density propagation for visual tracking. International Journal of Computer Vision, 29, 5–28. CrossRefGoogle Scholar
  14. Jepson, A. D., Fleet, D. J., & El-Maraghi, T. F. (2001). Robust online appearance models for visual tracking. In CVPR (1) (pp. 415–422). Google Scholar
  15. Jurie, F., & Dhome, M. (2002). Real time robust template matching. In British machine vision conference 2002 (pp. 123–131). Google Scholar
  16. Kalal, Z., Matas, J., & Mikolajczyk, K. (2010). P-N learning: bootstrapping binary classifiers by structural constraints. In CVPR. Google Scholar
  17. Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In IJCAI (pp. 674–679). Google Scholar
  18. Marchand, É., Bouthemy, P., Chaumette, F., & Moreau, V. (1999). Robust real-time visual tracking using a 2d-3d model-based approach. In ICCV (pp. 262–268). Google Scholar
  19. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11(2), 431–441. MathSciNetzbMATHCrossRefGoogle Scholar
  20. Matas, J., Zimmermann, K., Svoboda, T., & Hilton, A. (2006). Learning efficient linear predictors for motion estimation. In ICVGIP (pp. 445–456). Google Scholar
  21. Matthews, I., Ishikawa, T., & Baker, S. (2004). The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6), 810–815. CrossRefGoogle Scholar
  22. Mayol, W. W., & Murray, D. W. (2008). Tracking with general regression. Machine Vision and Applications, 19(1), 65–72. CrossRefGoogle Scholar
  23. Ong, E. J., & Bowden, R. (2009). Robust facial feature tracking using selected multi-resolution linear predictors (pp. 1483–1490). Google Scholar
  24. Paquin, D., Levy, D., Schreibmann, E., & Xing, L. (2006). Multiscale image registration. Mathematical Biosciences and Engineering, 3(2), 389–418. MathSciNetzbMATHCrossRefGoogle Scholar
  25. Ross, D. A., Lim, J., Lin, R. S., & Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1–3), 125–141. CrossRefGoogle Scholar
  26. Sheikh, Y. A., Khan, E. A., & Kanade, T. (2007). Mode-seeking by medoidshifts. In Eleventh IEEE international conference on computer vision (ICCV 2007) (p. 141). Google Scholar
  27. Shum, H. Y., & Szeliski, R. (2000). Systems and experiment paper: Construction of panoramic image mosaics with global and local alignment. International Journal of Computer Vision, 36(2), 101–130. CrossRefGoogle Scholar
  28. Viola, P., & Jones, M. (2002). Robust real-time object detection. International Journal of Computer Vision, 57(2), 137–154. CrossRefGoogle Scholar
  29. Williams, O. M. C., Blake, A., & Cipolla, R. (2003). A sparse probabilistic learning algorithm for real-time tracking. In ICCV (pp. 353–361). Google Scholar
  30. Zimmermann, K. (2008). Fast learnable methods for object tracking. PhD thesis, Center for Machine Perception (CMP), Czech Technical University, Prague, Czech Republic. Google Scholar
  31. Zimmermann, K., Matas, J., & Svoboda, T. (2009). Tracking by an optimal sequence of linear predictors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4), 677–692. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Liam Ellis
    • 1
    • 2
    Email author
  • Nicholas Dowson
    • 3
  • Jiri Matas
    • 4
  • Richard Bowden
    • 2
  1. 1.CVLLinköping UniversityLinköpingSweden
  2. 2.CVSSPUniversity of SurreyGuildfordUK
  3. 3.AEHRCRoyal Brisbane and Women’s HospitalBrisbaneAustralia
  4. 4.CMPCzech Technical UniversityPragueCzech Republic

Personalised recommendations