International Journal of Computer Vision

, Volume 90, Issue 3, pp 331–349 | Cite as

Anthropometric 3D Face Recognition

Article

Abstract

We present a novel anthropometric three dimensional (Anthroface 3D) face recognition algorithm, which is based on a systematically selected set of discriminatory structural characteristics of the human face derived from the existing scientific literature on facial anthropometry. We propose a novel technique for automatically detecting 10 anthropometric facial fiducial points that are associated with these discriminatory anthropometric features. We isolate and employ unique textural and/or structural characteristics of these fiducial points, along with the established anthropometric facial proportions of the human face for detecting them. Lastly, we develop a completely automatic face recognition algorithm that employs facial 3D Euclidean and geodesic distances between these 10 automatically located anthropometric facial fiducial points and a linear discriminant classifier. On a database of 1149 facial images of 118 subjects, we show that the standard deviation of the Euclidean distance of each automatically detected fiducial point from its manually identified position is less than 2.54 mm. We further show that the proposed Anthroface 3D recognition algorithm performs well (equal error rate of 1.98% and a rank 1 recognition rate of 96.8%), out performs three of the existing benchmark 3D face recognition algorithms, and is robust to the observed fiducial point localization errors.

Keywords

3D face recognition Anthropometric Local facial features Geodesic distances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Osaimi, F., Bennaman, M., & Mian, A. (2009). An expression deformation approach to non-rigid 3d face recognition. International Journal of Computer Vision, 81, 302–316. CrossRefGoogle Scholar
  2. BenAbdelkader, C., & Griffin, P. A. (2005). Comparing and combining depth and texture cues for face recognition. Image and Vision Computing, 23(3), 339–352. CrossRefGoogle Scholar
  3. Besl, P. J. (1988). Surfaces in range image understanding. New York: Springer. MATHGoogle Scholar
  4. Besl, P. J., & McKay, H. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. CrossRefGoogle Scholar
  5. Beumier, C., & Acheroy, M. (2001). Face verification from 3d and grey level clues. Pattern Recognition Letters, 22(12), 1321–1329. MATHCrossRefGoogle Scholar
  6. Bovik, A. C., Clark, M., & Geisler, W. S. (1990). Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1), 55–73. CrossRefGoogle Scholar
  7. Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2005). Three-dimensional face recognition. International Journal of Computer Vision, 64(1), 5–30. CrossRefGoogle Scholar
  8. Cadoni, M., Bicego, M., & Grosso, E. (2009). 3D face recognition using joint differential invariants. In Advances in biometrics (pp. 279–288). Berlin/Heidelberg: Springer. CrossRefGoogle Scholar
  9. Chang, K. I., Bowyer, K. W., & Flynn, P. J. (2005). An evaluation of multimodal 2d+3d face biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 619–624. CrossRefGoogle Scholar
  10. Comas, J. (1960). Manual of physical anthropology. Charles C. Thomas. Google Scholar
  11. DeCarlo, D., Metaxas, D., & Stone, M. (1998). An anthropometric face model using variational techniques. In SIGGRAPH (pp. 67–74). Google Scholar
  12. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271. MATHCrossRefMathSciNetGoogle Scholar
  13. Do Carmo, M. P. (1976). Differential geometry of curves and surfaces. New Jersey: Prentice-Hall. MATHGoogle Scholar
  14. Douglas-Cowie, E., Cowie, R., & Schroder, M. (2000). A new emotion database: considerations, sources and scope. In Proceedings of the ISCA ITRW on speech and emotion (pp. 39–44). Google Scholar
  15. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley. MATHGoogle Scholar
  16. Egan, J. P. (1975). Signal detection theory and ROC analysis. New York: Academic Press. Google Scholar
  17. Farkas, L. G. (1987). Anthropometric facial proportions in medicine. Thomas Books. Google Scholar
  18. Farkas, L. G. (1981). Anthropometry of the head and face in medicine. New York: Elsevier. Google Scholar
  19. Farkas, L. G. (Ed.) (1994). Anthropometry of the head and face. New York: Raven Press. Google Scholar
  20. Farkas, L. G. et al. (1985). An attempt to define the attractive face: an anthropometric study. In 18th annual meeting of the American society for aesthetic plastic surgery, Boston. Google Scholar
  21. Gordon, G. G. (1992). Face recognition based on depth and curvature features. In Computer vision and pattern recognition, 1992. Proceedings CVPR ’92, 1992, IEEE Computer Society Conference on (pp. 808–810). Google Scholar
  22. Gupta, S., Aggarwal, J. K., Markey, M. K., & Bovik, A. C. (2007a). 3d face recognition founded on the structural diversity of human faces. In Computer vision and pattern recognition, 2007 IEEE computer society conference on, Minneapolis, MN. Google Scholar
  23. Gupta, S., Markey, M. K., Aggarwal, J. K., & Bovik, A. C. (2007b). 3d face recognition based on Euclidean and geodesic distances. In Electronic imaging, IS&T/SPIE 19th annual symposium on, San Jose, CA. Google Scholar
  24. Gupta, S., Markey, M. K., & Bovik, A. C. (2007c). Advances and challenges in 3D and 2D+3D human face recognition. In Pattern recognition research horizons. New York: Nova Science. Google Scholar
  25. Gupta, S., Castleman, K. R., Markey, M. K., & Bovik, A. C. (2010). Texas 3d face recognition database. In Image analysis and interpretation, 2010 IEEE Southwest Symposium on, Austin, TX. Google Scholar
  26. Hamza, A., & Krim, H. (2006). Geodesic matching of triangulated surfaces. IEEE Transactions on Image Processing, 15(8), 2249–2258. CrossRefGoogle Scholar
  27. Henderson, J. M., Williams, C. C., & Falk, R. J. (2005). Eye movements are functional during face learning. Memory and Cognition, 33(1), 98–106. Google Scholar
  28. Heseltine, T. N. Pears, & Austin, J. (2004). Three-dimensional face recognition: a fishersurface approach. In A. Campilho, & M. Kamel (Eds.), LNCS : Vol. 3212. International conference on image analysis and recognition (pp. 684–691). Berlin/Heidelberg: Springer. Google Scholar
  29. Hesher, C., Srivastava, A., & Erlebacher, G. (2003). A novel technique for face recognition using range imaging. In Signal processing and its applications, 2003. Proceedings. Seventh international symposium on (Vol. 2, pp. 201–204). Google Scholar
  30. Hrdlička, A. (1939). Practical anthropometry. Wister Institute of Anatomy and Biology, Philadelphia. Google Scholar
  31. Hüsken, M., Brauckmann, M., Gehlen, S., & Von der Malsburg, C. (2005). Strategies and benefits of fusion of 2d and 3d face recognition. In Computer vision and pattern recognition, 2005 IEEE computer society conference on (Vol. 3, pp. 174–174). Google Scholar
  32. Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863. CrossRefGoogle Scholar
  33. Irfanöglu, M. O., Gökberk, B., & Akarun, L. (2004). 3d shape-based face recognition using automatically registered facial surfaces. In Proceedings of the 17th international conference on pattern recognition. IEEE Computer Society, Dept. of Comput. Eng., Bogazici Univ., Turkey (Vol. 4, pp. 183–186). Google Scholar
  34. Jahanbin, S., Bovik, A. C., & Choi, H. (2008). Automated facial feature detection from portrait and range images. In Image analysis and interpretation, 2008. SSIAI 2008. IEEE southwest symposium on (pp. 25–28). Google Scholar
  35. Koudelka, M. L., Koch, M. W., & Russ, T. D. (2005). A prescreener for 3d face recognition using radial symmetry and the Hausdorff fraction. In Computer vision and pattern recognition, 2005 IEEE computer society conference on (Vol. 3, pp. 168–168). Google Scholar
  36. Kukula, E. P., Elliott, S. J., Waupotitsch, R., & Pesenti, B. (2004). Effects of illumination changes on the performance of geometrix facevision/spl reg/ 3d frs. In Security technology, 2004. 38th annual 2004 international Carnahan conference on (pp. 331–337). Google Scholar
  37. Lee, Y., Song, H., Yang, U., Shin, H., & Sohn, K. (2005). Local feature based 3d face recognition. In LNCS : Vol. 3546. Audio- and video-based biometric person authentication, 2005 international conference on (pp. 909–918). Springer: Berlin. CrossRefGoogle Scholar
  38. Lu, X., Jain, A. K., & Colbry, D. (2006). Matching 2.5d face scans to 3d models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 31–43. CrossRefGoogle Scholar
  39. Malassiotis, S., & Strintzis, M. G. (2005). Robust face recognition using 2d and 3d data: pose and illumination compensation. Pattern Recognition, 38(12), 2537–2548. CrossRefGoogle Scholar
  40. Maurer, T., Guigonis, D., Maslov, I., Pesenti, B., Tsaregorodtsev, A., West, D., & Medioni, G. (2005). Performance of geometrix activeidTM 3d face recognition engine on the frgc data. In Computer vision and pattern recognition, 2005 IEEE computer society conference on (Vol. 3, pp. 154–154). Google Scholar
  41. Mian, A., Bennamoun, M., & Owens, R. (2007). An efficient multimodal 2d-3d hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 1927–1943. CrossRefGoogle Scholar
  42. Moreno, A. B., Sanchez, A., Fco, J., Fco, V., & Diaz, J. (2003). Face recognition using 3d surface-extracted descriptors. In Irish machine vision and image processing conference (IMVIP 2003). Google Scholar
  43. Penev, P. S., & Atick, J. J. (1996). Local feature analysis: a general statistical theory for object representation. Network: Computation in Neural Systems, 7, 477–500. MATHCrossRefGoogle Scholar
  44. Phillips, P. J., Grother, P., Micheals, R. J., Blackburn, D. M., Tabassi, E., & Bone, M. (2003). Face recognition vendor test 2002 evaluation report. Tech. rep., National Institute of Standards and Technology. Google Scholar
  45. Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview of the face recognition grand challenge. In Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on (Vol. 1, pp. 947–954). Google Scholar
  46. Rodriguez, J. J., & Aggarwal, J. K. (1990). Matching aerial images to 3-d terrain maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(12), 1138–1149. CrossRefGoogle Scholar
  47. Rogers, B. O. (1974). The role of physical anthropometry in plastic surgery today. Clinical Plastic Surgery, 1, 439. Google Scholar
  48. Russ, T. D., Koch, M. W., & Little, C. Q. (2005). A 2d range Hausdorff approach for 3d face recognition. In Computer vision and pattern recognition, 2005 IEEE computer society conference on (Vol. 3, pp. 169–176). Google Scholar
  49. Samir, C., Srivastava, A., Daoud, M., & Klassen, E. (2009). An intrinsic framework for analysis of facial surfaces. International Journal of Computer Vision, 82, 80–95. CrossRefGoogle Scholar
  50. Savran, A., Alyz, N., Dibekliolu, H., Eliktutan, O., Gkberk, B., Sankur, B., & Akarun, L. (2008). Bosphorus database for 3d face analysis. In LNCS : Vol. 5372/2008. Biometrics and identity management (pp. 47–56). Berlin/Heidelberg: Springer. CrossRefGoogle Scholar
  51. Sharma, S. (1996). Applied multivariate techniques. New York: Wiley. Google Scholar
  52. Shi, J., Samal, A., & Marx, D. (2006). How effective are landmarks and their geometry for face recognition? Computer Vision and Image Understanding, 102(2), 117–133. CrossRefGoogle Scholar
  53. Srivastava, A., Samir, C., Joshi, H. S., & Daoudi, M. (2009). Elastic shape models for face analysis using curvilinear coordinates. Journal of Mathematical Imaging and Vision, 33, 253–265. CrossRefMathSciNetGoogle Scholar
  54. Tanaka, J., & Farah, M. (2003). The holistic representation of faces. In Perception of faces, objects and scenes: analytical and holistic processes (pp. 53–74). New York: Oxford University Press. Google Scholar
  55. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. CrossRefGoogle Scholar
  56. Tsalakanidou, F., Malassiotis, S., & Strintzis, M. G. (2005). Face localization and authentication using color and depth images. IEEE Transactions on Image Processing, 14(2), 152–168. CrossRefGoogle Scholar
  57. Wang, Y., & Chua, C. (2005). Face recognition from 2d and 3d images using 3d Gabor filters. Image and Vision Computing, 23(11), 1018–1028. CrossRefGoogle Scholar
  58. Wang, Y., Chua, C., & Ho, Y. (2002). Facial feature detection and face recognition from 2d and 3d images. Pattern Recognition Letters, 23(10), 1191–1202. MATHCrossRefGoogle Scholar
  59. Wiskott, L., Fellous, J. M., Kuiger, N., & von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 775–779. CrossRefGoogle Scholar
  60. Xu, C., Wang, Y., Tan, T., & Quan, L. (2004). Automatic 3d face recognition combining global geometric features with local shape variation information. In Automatic face and gesture recognition, 2004. Proceedings. Sixth IEEE international conference on (pp. 308–313). Google Scholar
  61. Yin, L., Wei, X., Sun, Y., Wang, J., & Rosato, M. J. (2006). A 3d facial expression database for facial behavior research. In Automatic face and gesture recognition, 2006. FGR 2006. 7th international conference on (pp. 211–216). Google Scholar
  62. Zhang, G., & Wang, Y. (2009). Faceprint: fusion of local features for 3D face recognition. In Advances in biometrics (pp. 394–403). Berlin/Heidelberg: Springer. CrossRefGoogle Scholar
  63. Zhang, L., Razdan, A., Farin, G., Femiani, J., Bae, M., & Lockwood, C. (2006). 3d face authentication and recognition based on bilateral symmetry analysis. Visual Computer, 22(1), 43–55. MATHCrossRefGoogle Scholar
  64. Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: a literature survey. ACM Computing Surveys, 35(4), 399–459. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The Department of Electrical and Computer EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Department of Biomedical EngineeringThe University of TexasAustinUSA

Personalised recommendations