International Journal of Computer Vision

, Volume 92, Issue 3, pp 281–295 | Cite as

An Elasticity-Based Covariance Analysis of Shapes

  • Martin Rumpf
  • Benedikt WirthEmail author


We introduce the covariance of a number of given shapes if they are interpreted as boundary contours of elastic objects. Based on the notion of nonlinear elastic deformations from one shape to another, a suitable linearization of geometric shape variations is introduced. Once such a linearization is available, a principal component analysis can be investigated. This requires the definition of a covariance metric—an inner product on linearized shape variations. The resulting covariance operator robustly captures strongly nonlinear geometric variations in a physically meaningful way and allows to extract the dominant modes of shape variation. The underlying elasticity concept represents an alternative to Riemannian shape statistics. In this paper we compare a standard L 2-type covariance metric with a metric based on the Hessian of the nonlinear elastic energy. Furthermore, we explore the dependence of the principal component analysis on the type of the underlying nonlinear elasticity. For the built-in pairwise elastic registration, a relaxed model formulation is employed which allows for a non-exact matching. Shape contours are approximated by single well phase fields, which enables an extension of the method to a covariance analysis of image morphologies. The model is implemented with multilinear finite elements embedded in a multi-scale approach. The characteristics of the approach are demonstrated on a number of illustrative and real world examples in 2D and 3D.


Shape analysis Principal components Non-rigid registration Nonlinear elasticity Covariance metric Phase field approximation Finite element discretization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosio, L., & Tortorelli, V. M. (1990). Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Communications on Pure and Applied Mathematics, 43, 999–1036. MathSciNetzbMATHCrossRefGoogle Scholar
  2. Ambrosio, L., & Tortorelli, V. M. (1992). On the approximation of free discontinuity problems. Bollettino dell’Unione Matematica Italiana, Sezione B, 6(7), 105–123. MathSciNetzbMATHGoogle Scholar
  3. Ball, J. M. (1981). Global invertibility of Sobolev functions and the interpenetration of matter. Proceedings of the Royal Society of Edinburgh A, 88, 315–328. zbMATHGoogle Scholar
  4. Bhatia, K. K., Hajnal, J. V., Puri, B. K., Edwards, A. D., & Rueckert, D. (2004). Consistent groupwise non-rigid registration for atlas construction. In IEEE international symposium on biomedical imaging: nano to macro (Vol. 1, pp. 908–911). Google Scholar
  5. Bhatia, K. K., Hajnal, J. V., Hammers, A., & Rueckert, D. (2007). Similarity metrics for groupwise non-rigid registration. In N. Ayache, S. Ourselin, & A. Maeder (Eds.), LNCS : Vol. 4792. Medical image computing and computer–assisted intervention, MICCAI 2007 (pp. 544–552). Berlin: Springer. CrossRefGoogle Scholar
  6. Bronstein, A., Bronstein, M., & Kimmel, R. (2008). Numerical geometry of non-rigid shapes. Monographs in computer science. Berlin: Springer. zbMATHGoogle Scholar
  7. Chalmond, B., & Girard, S. C. (1999). Nonlinear modeling of scattered multivariate data and its application to shape change. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 422–432. CrossRefGoogle Scholar
  8. Chan, T. F., & Vese, L. A. (2001a). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277. zbMATHCrossRefGoogle Scholar
  9. Chan, T. F., & Vese, L. A. (2001b). A level set algorithm for minimizing the Mumford-Shah functional in image processing. In IEEE/Computer society proceedings of the 1st IEEE workshop on variational and level set methods in computer vision (pp. 161–168). Google Scholar
  10. Charpiat, G., Faugeras, O., & Keriven, R. (2005). Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics, 5(1), 1–58. MathSciNetzbMATHCrossRefGoogle Scholar
  11. Charpiat, G., Faugeras, O., Keriven, R., & Maurel, P. (2006). Distance-based shape statistics. In Acoustics, speech and signal processing, 2006 (ICASSP 2006) (Vol. 5). Google Scholar
  12. Chipot, M., & Evans, L. C. (1986). Linearization at infinity and Lipschitz estimates in the calculus of variations. Proceedings of the Royal Society of Edinburgh A, 102(3–4), 291–303. MathSciNetzbMATHGoogle Scholar
  13. Ciarlet, P. G. (1988). Three-dimensional elasticity. Amsterdam: Elsevier Science. zbMATHGoogle Scholar
  14. Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active shape models—their training and application. Computer Vision and Image Understanding, 61(1), 38–59. CrossRefGoogle Scholar
  15. Cremers, D., Kohlberger, T., & Schnörr, C. (2003). Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 36, 1929–1943. zbMATHCrossRefGoogle Scholar
  16. Dal Maso, G., Morel, J. M., & Solimini, S. (1992). A variational method in image segmentation: existence and approximation results. Acta Mathematica, 168(1–2), 89–151. MathSciNetzbMATHCrossRefGoogle Scholar
  17. Dambreville, S., Rathi, Y., & Tannenbaum, A. (2006). A shape-based approach to robust image segmentation. In A. Campilho, & M. Kamel (Eds.), LNCS : Vol. 4141. IEEE computer society conference on computer vision and pattern recognition (pp. 173–183). Berlin: Springer. Google Scholar
  18. De Giorgi, E., Carriero, M., & Leaci, A. (1989). Existence theorem for a minimum problem with free discontinuity set. Archive for Rational Mechanics and Analysis, 108, 195–218. MathSciNetzbMATHCrossRefGoogle Scholar
  19. Faugeras, O., Adde, G., Charpiat, G., Chefd’Hotel, C., Clerc, M., Deneux, T., Deriche, R., Hermosillo, G., Keriven, R., Kornprobst, P., Kybic, J., Lenglet, C., Lopez-Perez, L., Papadopoulo, T., Pons, J.-P., Segonne, F., Thirion, B., Tschumperlé, D., Viéville, T., & Wotawa, N. (2004). Variational, geometric, and statistical methods for modeling brain anatomy and function. NeuroImage, 23, S46–S55. CrossRefGoogle Scholar
  20. Fletcher, P. T., Lu, C., & Joshi, S. (2003). Statistics of shape via principal geodesic analysis on Lie groups. In IEEE computer society conference on computer vision and pattern recognition CVPR (Vol. 1, pp. 95–101). Google Scholar
  21. Fletcher, T., Venkatasubramanian, S., & Joshi, S. (2008). Robust statistics on Riemannian manifolds via the geometric median. In IEEE conference on computer vision and pattern recognition (CVPR). Google Scholar
  22. Fuchs, M., Jüttler, B., Scherzer, O., & Yang, H. (2008). Shape metrics based on elastic deformations. Technical report, FWF, Joint Research Program of Industrial Geometry. Google Scholar
  23. Fuchs, M., Jüttler, B., Scherzer, O., & Yang, H. (2009). Shape metrics based on elastic deformations. Journal of Mathematical Imaging and Vision, 35(1), 86–102. MathSciNetCrossRefGoogle Scholar
  24. Hafner, B. J., Zachariah, S. G., & Sanders, J. E. (2000). Characterisation of three-dimensional anatomic shapes using principal components: application to the proximal tibia. Medical and Biological Engineering and Computing, 38, 9–16. CrossRefGoogle Scholar
  25. Joshi, S., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23, 151–160. Supplement 1. CrossRefGoogle Scholar
  26. Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 30(5), 509–541. MathSciNetzbMATHCrossRefGoogle Scholar
  27. Kendall, D.G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121. MathSciNetzbMATHCrossRefGoogle Scholar
  28. Kilian, M., Mitra, N. J., & Pottmann, H. (2007). Geometric modeling in shape space. In ACM transactions on graphics (Vol. 26, pp. 1–8). Google Scholar
  29. Leventon, M. E., Grimson, W. E. L., & Faugeras, O. (2002). Statistical shape influence in geodesic active contours. In 5th IEEE EMBS international summer school on biomedical imaging, 2002. Google Scholar
  30. Marsland, S., Twining, C. J., & Taylor, C. J. (2003). Groupwise non-rigid registration using polyharmonic clamped–plate splines. In R. E. Ellis, & T. M. Peters (Eds.), LNCS : Vol. 2879. Medical image computing and computer–assisted intervention, MICCAI (pp. 771–779). Berlin: Springer. CrossRefGoogle Scholar
  31. Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5, 313–347. MathSciNetzbMATHCrossRefGoogle Scholar
  32. Miller, M. I., & Younes, L. (2001). Group actions, homeomorphisms, and matching: a general framework. International Journal of Computer Vision, 41(1–2), 61–84. zbMATHCrossRefGoogle Scholar
  33. Miller, M. I., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405. CrossRefGoogle Scholar
  34. Morel, J.-M., & Solimini, S. (1988). Segmentation of images by variational methods: a constructive approach. Revista Matematica de la Universidad Complutense de Madrid, 1(1), 169–182. MathSciNetzbMATHGoogle Scholar
  35. Mumford, D., & Shah, J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure Applied Mathematics, 42, 577–685. MathSciNetzbMATHCrossRefGoogle Scholar
  36. Perperidis, D., Mohiaddin, R., & Rueckert, D. (2005). Construction of a 4d statistical atlas of the cardiac anatomy and its use in classification. In J. Duncan, & G. Gerig (Eds.), LNCS : Vol. 3750. Medical image computing and computer assisted intervention (pp. 402–410). Berlin: Springer. CrossRefGoogle Scholar
  37. Rathi, Y., Dambreville, S., & Tannenbaum, A. (2006). Comparative analysis of kernel methods for statistical shape learning. In R. R. Beichel, & M. Sonka (Eds.), LNCS : Vol. 4241. Computer vision approaches to medical image analysis (pp. 96–107). Berlin: Springer. CrossRefGoogle Scholar
  38. Rueckert, D., Frangi, A. F., & Schnabel, J. A. (2001). Automatic construction of 3D statistical deformation models using nonrigid registration. In W. Niessen, & M. Viergever (Eds.), LNCS : Vol. 2208. Medical image computing and computer–assisted intervention, MICCAI (pp. 77–84). Berlin: Springer. Google Scholar
  39. Rumpf, M., & Wirth, B. (2009a). An elasticity approach to principal modes of shape variation. In LNCS : Vol. 5567. Proceedings of the second international conference on scale space methods and variational methods in computer vision (SSVM 2009) (pp. 709–720). Berlin: Springer. CrossRefGoogle Scholar
  40. Rumpf, M., & Wirth, B. (2009b). A nonlinear elastic shape averaging approach. SIAM Journal on Imaging Sciences, 2(3), 800–833. MathSciNetzbMATHCrossRefGoogle Scholar
  41. Söhn, M., Birkner, M., Yan, D., & Alber, M. (2005). Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation. Physics in Medicine and Biology, 50, 5893–5908. CrossRefGoogle Scholar
  42. Srivastava, A., Jain, A., Joshi, S., & Kaziska, D. (2006). Statistical shape models using elastic-string representations. In P. J. Narayanan (Ed.), LNCS : Vol. 3851. Asian conference on computer vision (pp. 612–621). Berlin: Springer. Google Scholar
  43. Studholme, C. (2003). Simultaneous population based image alignment for template free spatial normalisation of brain anatomy. In J. C. Gee, J. B. A. Maintz, & M. W. Vannier (Eds.), LNCS : Vol. 2717. Second international workshop, WBIR, biomedical image registration (pp. 81–90). Berlin: Springer. CrossRefGoogle Scholar
  44. Wirth, B., Bar, L., Rumpf, M., & Sapiro, G. (2009). Geodesics in shape space via variational time discretization. In LNCS : Vol. 5681. Proceedings of the 7th international conference on energy minimization methods in computer vision and pattern recognition (EMMCVPR ’09) (pp. 288–302). Berlin: Springer. CrossRefGoogle Scholar
  45. Younes, L. (1998). Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586. MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Bonn UniversityBonnGermany

Personalised recommendations