Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Primal and Dual Bregman Methods with Application to Optical Nanoscopy

Abstract

Measurements in nanoscopic imaging suffer from blurring effects modeled with different point spread functions (PSF). Some apparatus even have PSFs that are locally dependent on phase shifts. Additionally, raw data are affected by Poisson noise resulting from laser sampling and “photon counts” in fluorescence microscopy. In these applications standard reconstruction methods (EM, filtered backprojection) deliver unsatisfactory and noisy results. Starting from a statistical modeling in terms of a MAP likelihood estimation we combine the iterative EM algorithm with total variation (TV) regularization techniques to make an efficient use of a-priori information. Typically, TV-based methods deliver reconstructed cartoon images suffering from contrast reduction. We propose extensions to EM-TV, based on Bregman iterations and primal and dual inverse scale space methods, in order to obtain improved imaging results by simultaneous contrast enhancement. Besides further generalizations of the primal and dual scale space methods in terms of general, convex variational regularization methods, we provide error estimates and convergence rates for exact and noisy data. We illustrate the performance of our techniques on synthetic and experimental biological data.

This is a preview of subscription content, log in to check access.

References

  1. Acar, R., & Vogel, C. R. (1994). Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems, 10, 1217–1229.

  2. Aubert, G., & Aujol, J. F. (2008). A variational approach to remove multiplicative noise. SIAM Journal on Applied Mathematics, 68, 925–946.

  3. Bardsley, J., & Goldes, J. (2009). Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Problems, 25.

  4. Bardsley, J., & Luttman, A. (2009). Total variation-penalized Poisson likelihood estimation for ill-posed problems. Advances in Computational Mathematics, 31(1), 35–59.

  5. Benning, M., & Burger, M. (2009). Error estimates for variational models with non-Gaussian noise (Tech. Rep. 09-40). UCLA CAM.

  6. Bertero, M., Lantéri, H., & Zanni, L. (2008). Iterative image reconstruction: a point of view. In: CRM series: Vol. 8. Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT).

  7. Bissantz, N., Hohage, T., Munk, A., & Ruymgaart, F. (2007). Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM Journal on Numerical Analysis, 45, 2610–2636.

  8. Bregman, L. M. (1967). The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7, 200–217.

  9. Brune, C., Sawatzky, A., & Burger, M. (2009a). Bregman-EM-TV methods with application to optical nanoscopy. In Proceedings of the 2nd international conference on scale space and variational methods in computer vision (Vol. 5567, pp. 235–246). doi:10.1007/978-3-642-02256-2_20.

  10. Brune, C., Sawatzky, A., Wübbeling, F., Kösters, T., & Burger, M. (2010). Forward backward EM-TV methods for inverse problems with Poisson noise. Preprint.

  11. Burger, M., & Osher, S. (2004). Convergence rates of convex variational regularization. Inverse Problems, 20, 1411–1421.

  12. Burger, M., Gilboa, G., Osher, S., & Xu, J. (2006). Nonlinear inverse scale space methods. Communications in Mathematical Sciences, 4(1), 179–212.

  13. Burger, M., Frick, K., Osher, S., & Scherzer, O. (2007a). Inverse total variation flow. SIAM Multiscale Modelling and Simulation, 6(2), 366–395.

  14. Burger, M., Resmerita, E., & He, L. (2007b). Error estimation for Bregman iterations and inverse scale space methods. Computing, 81, 109–135.

  15. Burger, M., Schönlieb, C., & He, L. (2009). Cahn-Hilliard inpainting and a generalization to gray-value images. SIAM Journal of Imaging Science, 3

  16. Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20, 89–97.

  17. Csiszar, I. (1991). Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Annals of Statistics, 19, 2032–2066.

  18. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.

  19. Dey, N., Blanc-Feraud, L., Zimmer, C., Kam, Z., Roux, P., Olivo-Marin, J. C., & Zerubia, J. (2006). Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microscopy Research Technique, 69, 260–266.

  20. Ekeland, I., & Temam, R. (1999). Convex analysis and variational problems. Philadelphia: SIAM (Corrected Reprint Edition).

  21. Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems. Dordrecht: Kluwer Academic (Paperback edition 2000).

  22. Evans, L. C., & Gariepy, R. F. (1992). Measure theory and fine properties of functions. Studies in advanced mathematics. Boca Raton: CRC Press.

  23. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

  24. Geman, S., & McClure, D. E. (1985). Bayesian image analysis: an application to single photon emission tomography. In Proc. statistical computation section (pp. 12–18). Washington: American Statistical Association.

  25. Giusti, E. (1984). Minimal surfaces and functions of bounded variation. Basel: Birkhäuser.

  26. Goldstein, T., & Osher, S. (2009). The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343.

  27. He, L., Marquina, A., & Osher, S. (2005). Blind deconvolution using TV regularization and Bregman iteration. International Journal of Imaging Systems and Technology, 15(1), 74–83.

  28. Hell, S., & Schönle, A. (2006). Nanoscale resolution in far-field fluorescence microscopy. In P. W. Hawkes & J. C. H. Spence (Eds.), Science of microscopy. Berlin: Springer.

  29. Hiriart-Urruty, J. B., & Lemaréchal, C. (1993). Grundlehren der mathematischen Wissenschaften (Fundamental principles of mathematical sciences) : Vol. 305. Convex analysis and minimization algorithms I. Berlin: Springer.

  30. Hofmann, B., Kaltenbacher, B., Pöschl, C., & Scherzer, O. (2007). A Convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems, 23, 987–1010.

  31. Hohage, T. (2009). Variational regularization of inverse problems with Poisson data. Preprint.

  32. Huang, Y. M., Ng, M. K., & Wen, Y. W. (2009). A new total variation method for multiplicative noise removal. SIAM Journal on Imaging Sciences, 2, 20–40.

  33. Iusem, A. N. (1991). Convergence analysis for a multiplicatively relaxed EM algorithm. Mathematical Methods in the Applied Sciences, 14, 573–593.

  34. Jonsson, E., Huang, S. C., & Chan, T. (1998). Total variation regularization in positron emission tomography (CAM Report 98-48). UCLA.

  35. Kittel, J., et al. (2006). Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science, 312, 1051–1054.

  36. Kiwiel, K. (1997). Proximal minimization methods with generalized Bregman functions. SIAM Journal on Control and Optimization, 35, 1142–1168.

  37. Klar, T. A., et al. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS, 97, 8206–8210.

  38. Le, T., Chartrand, R., & Asaki, T. J. (2007). A variational approach to reconstructing images corrupted by Poisson noise. Journal of Mathematical Imaging and Vision, 27, 257–263.

  39. Liao, H., Li, F., & Ng, M. K. (2009). Selection of regularization parameter in total variation image restoration. Journal of the Optical Society of America A, 26, 2311–2320.

  40. Lorenz, D. A. (2008). Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. Journal of Inverse and Ill-Posed Problems, 16, 463–478.

  41. Lorenz, D. A., & Trede, D. (2008). Optimal convergence rates for Tikhonov regularization in Besov scales. Inverse Problems, 24, 055010.

  42. Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. The Astronomical Journal, 79, 745–754.

  43. Marquina, A. (2009). Nonlinear inverse scale space methods for total variation blind deconvolution. SIAM Journal on Imaging Sciences, 2(1), 64–83.

  44. Natterer, F., & Wübbeling, F. (2001). Mathematical methods in image reconstruction. SIAM monographs on mathematical modeling and computation.

  45. Osher, S., Burger, M., Goldfarb, D., Xu, J., & Yin, W. (2005). An iterative regularization method for total variation based image restoration. Multiscale Modelling and Simulation, 4, 460–489.

  46. Panin, V. Y., Zeng, G. L., & Gullberg, G. T. (1999). Total variation regulated EM algorithm. IEEE Transactions on Nuclear Sciences, NS-46, 2202–2010.

  47. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.

  48. Remmele, S., Seeland, M., & Hesser, J. (2008). Fluorescence microscopy deconvolution based on Bregman iteration and Richardson-Lucy algorithm with TV regularization. In T. Tolxdorff, J. Braun, T. M. Deserno, H. Handels, A. Horsch, & H.-P. Meinzer (Eds.), Informatik aktuell. Proceedings of the workshop bildverarbeitung für die Medizin 2008 (pp. 72–76). Berlin: Springer. doi:10.1007/978-3-540-78640-5_15.

  49. Resmerita, E., & Anderssen, S. (2007). Joint additive Kullback-Leibler residual minimization and regularization for linear inverse problems. Mathematical Methods in the Applied Sciences, 30, 1527–1544.

  50. Resmerita, E., & Scherzer, O. (2006). Error estimates for non-quadratic regularization and the relation to enhancing. Inverse Problems, 22, 801–814.

  51. Resmerita, E., et al. (2007). The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Problems, 23, 2575–2588.

  52. Richardson, W. H. (1972). Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 62, 55–59.

  53. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.

  54. Rudin, L., Lions, P. L., & Osher, S. (2003). Multiplicative denoising and debluring: theory and algorithms. In S. Osher & N. Paragios (Eds.), Geometric level sets in imaging, vision, and graphics (pp. 103–119). New York: Springer.

  55. Sawatzky, A., Brune, C., Wübbeling, F., Kösters, T., & Schäfers, K. M. B. (2008). Accurate EM-TV algorithm in PET with low SNR. In IEEE nuclear science symposium.

  56. Scherzer, O., & Groetsch, C. (2001). Inverse scale space theory for inverse problems. In M. Kerckhove (Ed.), Scale-space and morphology in computer vision. Proc. 3rd int. conf. scale-space (pp. 317–325). Berlin: Springer.

  57. Shepp, L. A., & Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging, 1(2), 113–122.

  58. Shi, J., & Osher, S. (2008). A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM Journal on Imaging Sciences, 1(3), 294–321.

  59. Strong, D. M., Aujol, J.-F., & Chan, T. F. (2006). Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization. Multiscale Modeling & Simulation, 5(1), 273–303.

  60. Snyder, D. L., Helstrom, C. W., Lanterman, A. D., Faisal, M., & White, R. L. (1995). Compensation for readout noise in CCD images. Journal of the Optical Society of America A, 12, 272–283.

  61. Vardi, Y., Shepp, L. A., & Kaufman, L. (1985). A statistical model for positron emission tomography. Journal of the American Statistical Association, 80(389), 8–20.

  62. Vogel, C. (2002). Computational methods for inverse problems. Philadelphia: SIAM.

  63. Wernick, M. N., & Aarsvold, J. N. (Eds.) (2004). Emission tomography: the fundamentals of PET and SPECT. San Diego: Academic Press.

  64. Willig, K. I., Harke, B., Medda, R., & Hell, S. W. (2007). STED microscopy with continuous wave beams. Nature Methods, 4(11), 915–918.

  65. Witkin, A. P. (1983). Scale-space filtering. In Proc. int. joint conf. on artificial intelligence (pp. 1019–1023). Karlsruhe.

Download references

Author information

Correspondence to Christoph Brune.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brune, C., Sawatzky, A. & Burger, M. Primal and Dual Bregman Methods with Application to Optical Nanoscopy. Int J Comput Vis 92, 211–229 (2011). https://doi.org/10.1007/s11263-010-0339-5

Download citation

Keywords

  • Imaging
  • Poisson noise
  • Bregman distance
  • Inverse scale space
  • Duality
  • Error estimation
  • Image processing