International Journal of Computer Vision

, Volume 92, Issue 2, pp 211–229

Primal and Dual Bregman Methods with Application to Optical Nanoscopy

Article

Abstract

Measurements in nanoscopic imaging suffer from blurring effects modeled with different point spread functions (PSF). Some apparatus even have PSFs that are locally dependent on phase shifts. Additionally, raw data are affected by Poisson noise resulting from laser sampling and “photon counts” in fluorescence microscopy. In these applications standard reconstruction methods (EM, filtered backprojection) deliver unsatisfactory and noisy results. Starting from a statistical modeling in terms of a MAP likelihood estimation we combine the iterative EM algorithm with total variation (TV) regularization techniques to make an efficient use of a-priori information. Typically, TV-based methods deliver reconstructed cartoon images suffering from contrast reduction. We propose extensions to EM-TV, based on Bregman iterations and primal and dual inverse scale space methods, in order to obtain improved imaging results by simultaneous contrast enhancement. Besides further generalizations of the primal and dual scale space methods in terms of general, convex variational regularization methods, we provide error estimates and convergence rates for exact and noisy data. We illustrate the performance of our techniques on synthetic and experimental biological data.

Keywords

Imaging Poisson noise Bregman distance Inverse scale space Duality Error estimation Image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für Numerische und Angewandte MathematikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations