International Journal of Computer Vision

, Volume 92, Issue 2, pp 211–229 | Cite as

Primal and Dual Bregman Methods with Application to Optical Nanoscopy

  • Christoph BruneEmail author
  • Alex Sawatzky
  • Martin Burger


Measurements in nanoscopic imaging suffer from blurring effects modeled with different point spread functions (PSF). Some apparatus even have PSFs that are locally dependent on phase shifts. Additionally, raw data are affected by Poisson noise resulting from laser sampling and “photon counts” in fluorescence microscopy. In these applications standard reconstruction methods (EM, filtered backprojection) deliver unsatisfactory and noisy results. Starting from a statistical modeling in terms of a MAP likelihood estimation we combine the iterative EM algorithm with total variation (TV) regularization techniques to make an efficient use of a-priori information. Typically, TV-based methods deliver reconstructed cartoon images suffering from contrast reduction. We propose extensions to EM-TV, based on Bregman iterations and primal and dual inverse scale space methods, in order to obtain improved imaging results by simultaneous contrast enhancement. Besides further generalizations of the primal and dual scale space methods in terms of general, convex variational regularization methods, we provide error estimates and convergence rates for exact and noisy data. We illustrate the performance of our techniques on synthetic and experimental biological data.


Imaging Poisson noise Bregman distance Inverse scale space Duality Error estimation Image processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acar, R., & Vogel, C. R. (1994). Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems, 10, 1217–1229. MathSciNetzbMATHCrossRefGoogle Scholar
  2. Aubert, G., & Aujol, J. F. (2008). A variational approach to remove multiplicative noise. SIAM Journal on Applied Mathematics, 68, 925–946. MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bardsley, J., & Goldes, J. (2009). Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Problems, 25. Google Scholar
  4. Bardsley, J., & Luttman, A. (2009). Total variation-penalized Poisson likelihood estimation for ill-posed problems. Advances in Computational Mathematics, 31(1), 35–59. MathSciNetzbMATHCrossRefGoogle Scholar
  5. Benning, M., & Burger, M. (2009). Error estimates for variational models with non-Gaussian noise (Tech. Rep. 09-40). UCLA CAM. Google Scholar
  6. Bertero, M., Lantéri, H., & Zanni, L. (2008). Iterative image reconstruction: a point of view. In: CRM series: Vol. 8. Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT). Google Scholar
  7. Bissantz, N., Hohage, T., Munk, A., & Ruymgaart, F. (2007). Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM Journal on Numerical Analysis, 45, 2610–2636. MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bregman, L. M. (1967). The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7, 200–217. CrossRefGoogle Scholar
  9. Brune, C., Sawatzky, A., & Burger, M. (2009a). Bregman-EM-TV methods with application to optical nanoscopy. In Proceedings of the 2nd international conference on scale space and variational methods in computer vision (Vol. 5567, pp. 235–246). doi: 10.1007/978-3-642-02256-2_20.
  10. Brune, C., Sawatzky, A., Wübbeling, F., Kösters, T., & Burger, M. (2010). Forward backward EM-TV methods for inverse problems with Poisson noise. Preprint. Google Scholar
  11. Burger, M., & Osher, S. (2004). Convergence rates of convex variational regularization. Inverse Problems, 20, 1411–1421. MathSciNetzbMATHCrossRefGoogle Scholar
  12. Burger, M., Gilboa, G., Osher, S., & Xu, J. (2006). Nonlinear inverse scale space methods. Communications in Mathematical Sciences, 4(1), 179–212. MathSciNetzbMATHGoogle Scholar
  13. Burger, M., Frick, K., Osher, S., & Scherzer, O. (2007a). Inverse total variation flow. SIAM Multiscale Modelling and Simulation, 6(2), 366–395. MathSciNetzbMATHCrossRefGoogle Scholar
  14. Burger, M., Resmerita, E., & He, L. (2007b). Error estimation for Bregman iterations and inverse scale space methods. Computing, 81, 109–135. MathSciNetzbMATHCrossRefGoogle Scholar
  15. Burger, M., Schönlieb, C., & He, L. (2009). Cahn-Hilliard inpainting and a generalization to gray-value images. SIAM Journal of Imaging Science, 3 Google Scholar
  16. Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20, 89–97. MathSciNetCrossRefGoogle Scholar
  17. Csiszar, I. (1991). Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Annals of Statistics, 19, 2032–2066. MathSciNetzbMATHCrossRefGoogle Scholar
  18. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38. MathSciNetzbMATHGoogle Scholar
  19. Dey, N., Blanc-Feraud, L., Zimmer, C., Kam, Z., Roux, P., Olivo-Marin, J. C., & Zerubia, J. (2006). Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microscopy Research Technique, 69, 260–266. CrossRefGoogle Scholar
  20. Ekeland, I., & Temam, R. (1999). Convex analysis and variational problems. Philadelphia: SIAM (Corrected Reprint Edition). zbMATHGoogle Scholar
  21. Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems. Dordrecht: Kluwer Academic (Paperback edition 2000). zbMATHGoogle Scholar
  22. Evans, L. C., & Gariepy, R. F. (1992). Measure theory and fine properties of functions. Studies in advanced mathematics. Boca Raton: CRC Press. zbMATHGoogle Scholar
  23. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741. zbMATHCrossRefGoogle Scholar
  24. Geman, S., & McClure, D. E. (1985). Bayesian image analysis: an application to single photon emission tomography. In Proc. statistical computation section (pp. 12–18). Washington: American Statistical Association. Google Scholar
  25. Giusti, E. (1984). Minimal surfaces and functions of bounded variation. Basel: Birkhäuser. zbMATHGoogle Scholar
  26. Goldstein, T., & Osher, S. (2009). The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343. MathSciNetzbMATHCrossRefGoogle Scholar
  27. He, L., Marquina, A., & Osher, S. (2005). Blind deconvolution using TV regularization and Bregman iteration. International Journal of Imaging Systems and Technology, 15(1), 74–83. CrossRefGoogle Scholar
  28. Hell, S., & Schönle, A. (2006). Nanoscale resolution in far-field fluorescence microscopy. In P. W. Hawkes & J. C. H. Spence (Eds.), Science of microscopy. Berlin: Springer. Google Scholar
  29. Hiriart-Urruty, J. B., & Lemaréchal, C. (1993). Grundlehren der mathematischen Wissenschaften (Fundamental principles of mathematical sciences) : Vol. 305. Convex analysis and minimization algorithms I. Berlin: Springer. Google Scholar
  30. Hofmann, B., Kaltenbacher, B., Pöschl, C., & Scherzer, O. (2007). A Convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems, 23, 987–1010. MathSciNetzbMATHCrossRefGoogle Scholar
  31. Hohage, T. (2009). Variational regularization of inverse problems with Poisson data. Preprint. Google Scholar
  32. Huang, Y. M., Ng, M. K., & Wen, Y. W. (2009). A new total variation method for multiplicative noise removal. SIAM Journal on Imaging Sciences, 2, 20–40. MathSciNetzbMATHCrossRefGoogle Scholar
  33. Iusem, A. N. (1991). Convergence analysis for a multiplicatively relaxed EM algorithm. Mathematical Methods in the Applied Sciences, 14, 573–593. MathSciNetzbMATHCrossRefGoogle Scholar
  34. Jonsson, E., Huang, S. C., & Chan, T. (1998). Total variation regularization in positron emission tomography (CAM Report 98-48). UCLA. Google Scholar
  35. Kittel, J., et al. (2006). Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science, 312, 1051–1054. CrossRefGoogle Scholar
  36. Kiwiel, K. (1997). Proximal minimization methods with generalized Bregman functions. SIAM Journal on Control and Optimization, 35, 1142–1168. MathSciNetzbMATHCrossRefGoogle Scholar
  37. Klar, T. A., et al. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS, 97, 8206–8210. CrossRefGoogle Scholar
  38. Le, T., Chartrand, R., & Asaki, T. J. (2007). A variational approach to reconstructing images corrupted by Poisson noise. Journal of Mathematical Imaging and Vision, 27, 257–263. MathSciNetCrossRefGoogle Scholar
  39. Liao, H., Li, F., & Ng, M. K. (2009). Selection of regularization parameter in total variation image restoration. Journal of the Optical Society of America A, 26, 2311–2320. MathSciNetCrossRefGoogle Scholar
  40. Lorenz, D. A. (2008). Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. Journal of Inverse and Ill-Posed Problems, 16, 463–478. MathSciNetzbMATHCrossRefGoogle Scholar
  41. Lorenz, D. A., & Trede, D. (2008). Optimal convergence rates for Tikhonov regularization in Besov scales. Inverse Problems, 24, 055010. MathSciNetCrossRefGoogle Scholar
  42. Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. The Astronomical Journal, 79, 745–754. CrossRefGoogle Scholar
  43. Marquina, A. (2009). Nonlinear inverse scale space methods for total variation blind deconvolution. SIAM Journal on Imaging Sciences, 2(1), 64–83. MathSciNetzbMATHCrossRefGoogle Scholar
  44. Natterer, F., & Wübbeling, F. (2001). Mathematical methods in image reconstruction. SIAM monographs on mathematical modeling and computation. Google Scholar
  45. Osher, S., Burger, M., Goldfarb, D., Xu, J., & Yin, W. (2005). An iterative regularization method for total variation based image restoration. Multiscale Modelling and Simulation, 4, 460–489. MathSciNetzbMATHCrossRefGoogle Scholar
  46. Panin, V. Y., Zeng, G. L., & Gullberg, G. T. (1999). Total variation regulated EM algorithm. IEEE Transactions on Nuclear Sciences, NS-46, 2202–2010. CrossRefGoogle Scholar
  47. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639. CrossRefGoogle Scholar
  48. Remmele, S., Seeland, M., & Hesser, J. (2008). Fluorescence microscopy deconvolution based on Bregman iteration and Richardson-Lucy algorithm with TV regularization. In T. Tolxdorff, J. Braun, T. M. Deserno, H. Handels, A. Horsch, & H.-P. Meinzer (Eds.), Informatik aktuell. Proceedings of the workshop bildverarbeitung für die Medizin 2008 (pp. 72–76). Berlin: Springer. doi: 10.1007/978-3-540-78640-5_15. CrossRefGoogle Scholar
  49. Resmerita, E., & Anderssen, S. (2007). Joint additive Kullback-Leibler residual minimization and regularization for linear inverse problems. Mathematical Methods in the Applied Sciences, 30, 1527–1544. MathSciNetzbMATHCrossRefGoogle Scholar
  50. Resmerita, E., & Scherzer, O. (2006). Error estimates for non-quadratic regularization and the relation to enhancing. Inverse Problems, 22, 801–814. MathSciNetzbMATHCrossRefGoogle Scholar
  51. Resmerita, E., et al. (2007). The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Problems, 23, 2575–2588. MathSciNetzbMATHCrossRefGoogle Scholar
  52. Richardson, W. H. (1972). Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 62, 55–59. CrossRefGoogle Scholar
  53. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268. zbMATHCrossRefGoogle Scholar
  54. Rudin, L., Lions, P. L., & Osher, S. (2003). Multiplicative denoising and debluring: theory and algorithms. In S. Osher & N. Paragios (Eds.), Geometric level sets in imaging, vision, and graphics (pp. 103–119). New York: Springer. CrossRefGoogle Scholar
  55. Sawatzky, A., Brune, C., Wübbeling, F., Kösters, T., & Schäfers, K. M. B. (2008). Accurate EM-TV algorithm in PET with low SNR. In IEEE nuclear science symposium. Google Scholar
  56. Scherzer, O., & Groetsch, C. (2001). Inverse scale space theory for inverse problems. In M. Kerckhove (Ed.), Scale-space and morphology in computer vision. Proc. 3rd int. conf. scale-space (pp. 317–325). Berlin: Springer. Google Scholar
  57. Shepp, L. A., & Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging, 1(2), 113–122. CrossRefGoogle Scholar
  58. Shi, J., & Osher, S. (2008). A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM Journal on Imaging Sciences, 1(3), 294–321. MathSciNetzbMATHCrossRefGoogle Scholar
  59. Strong, D. M., Aujol, J.-F., & Chan, T. F. (2006). Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization. Multiscale Modeling & Simulation, 5(1), 273–303. MathSciNetzbMATHCrossRefGoogle Scholar
  60. Snyder, D. L., Helstrom, C. W., Lanterman, A. D., Faisal, M., & White, R. L. (1995). Compensation for readout noise in CCD images. Journal of the Optical Society of America A, 12, 272–283. CrossRefGoogle Scholar
  61. Vardi, Y., Shepp, L. A., & Kaufman, L. (1985). A statistical model for positron emission tomography. Journal of the American Statistical Association, 80(389), 8–20. MathSciNetzbMATHCrossRefGoogle Scholar
  62. Vogel, C. (2002). Computational methods for inverse problems. Philadelphia: SIAM. zbMATHCrossRefGoogle Scholar
  63. Wernick, M. N., & Aarsvold, J. N. (Eds.) (2004). Emission tomography: the fundamentals of PET and SPECT. San Diego: Academic Press. Google Scholar
  64. Willig, K. I., Harke, B., Medda, R., & Hell, S. W. (2007). STED microscopy with continuous wave beams. Nature Methods, 4(11), 915–918. CrossRefGoogle Scholar
  65. Witkin, A. P. (1983). Scale-space filtering. In Proc. int. joint conf. on artificial intelligence (pp. 1019–1023). Karlsruhe. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für Numerische und Angewandte MathematikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations