International Journal of Computer Vision

, Volume 90, Issue 1, pp 45–61 | Cite as

Learning Photometric Invariance for Object Detection

  • Jose M. Álvarez
  • Theo Gevers
  • Antonio M. López
Article

Abstract

Color is a powerful visual cue in many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions that negatively affect the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, this approach may be too restricted to model real-world scenes in which different reflectance mechanisms can hold simultaneously.

Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is computed composed of both color variants and invariants. Then, the proposed method combines these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, our fusion method uses a multi-view approach to minimize the estimation error. In this way, the proposed method is robust to data uncertainty and produces properly diversified color invariant ensembles. Further, the proposed method is extended to deal with temporal data by predicting the evolution of observations over time.

Experiments are conducted on three different image datasets to validate the proposed method. Both the theoretical and experimental results show that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning, and outperforms state-of-the-art detection techniques in the field of object, skin and road recognition. Considering sequential data, the proposed method (extended to deal with future observations) outperforms the other methods.

Keywords

Object detection Color models Learning Photometric invariance Combining classifiers Diversified ensembles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Álvarez, J. M., López, A. M., & Baldrich, R. Illuminant-invarariant model-based road segmentation. In Proceedings of the 2008 IEEE international vehicles symposium (IV’08), Eindhoven, The Netherlands. Google Scholar
  2. Best, P. (1998). Implementing value at risk. New York: Wiley. CrossRefGoogle Scholar
  3. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press. MATHGoogle Scholar
  4. Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: a survey and categorisation. Google Scholar
  5. Chai, D., & Ngan, K. (1999). Face segmentation using skin-color map in videophone applications. IEEE Transactions on Circuits and Systems for Video Technology, 9(4), 551–564. CrossRefGoogle Scholar
  6. Dowd, K. (1998). Beyond value at risk: the new science of risk management. New York: Wiley. MATHGoogle Scholar
  7. Finlayson, G. D., Drew, M. S., & Lu, C. (2004). Intrinsic images by entropy minimization. In Proceedings of the European conference on computer vision (ECCV) (Vol. 3, pp. 582–595). Google Scholar
  8. Finlayson, G., Hordley, S., Lu, C., & Drew, M. (2006). On the removal of shadows from images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1). Google Scholar
  9. Fleck, M. M., Forsyth, D. A., & Bregler, C. (1996). Finding naked people. In Proceedings of the European conference on computer vision (ECCV) (Vol. 3, pp. 593–602). Berlin: Springer Google Scholar
  10. Geusebroek, J. M., Burghouts, G. J., & Smeulders, A. W. M. (2005). The Amsterdam library of object images. International Journal Computer Vision, 61(1), 103–112. CrossRefGoogle Scholar
  11. Hartigan, J. A., & Hartigan, P. M. (1985). The dip test of unimodality. The Annals of Statistics, 13(1), 70–84. MATHCrossRefMathSciNetGoogle Scholar
  12. Ikonomakis, N., Plataniotis, K., & Venetsanopoulos, A. (2000). Color image segmentation for multimedia applications. Journal of Intelligent Robotics Systems, 28(1–2). Google Scholar
  13. Jacobs, R. A. (1995). Methods for combining experts’ probability assessments. Neural Computing, 7(5), 867–888. CrossRefGoogle Scholar
  14. Jolliffe, I. T. (2002). Springer series in statistics. Principal component analysis (2nd ed.). Berlin: Springer. MATHGoogle Scholar
  15. Jones, M. J., & Rehg, J. M. (2002). Statistical color models with application to skin detection. International Journal Computer Vision, 46(1), 81–96. MATHCrossRefGoogle Scholar
  16. Kender, J. (2005). Saturation, hue and normalized color: calculation, digitation effects, and use (Tech. Rep. CMU-RI-TR-05-40). Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. Google Scholar
  17. Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239. CrossRefGoogle Scholar
  18. Kovac, J., Peer, P., & Solina, F. (2003). Human skin color clustering for face detection. In International conference on computer as a tool (EUROCON). Google Scholar
  19. Kuncheva, L. I. (2004). Combining pattern classifiers: methods and algorithms. New York: Wiley-Interscience. MATHCrossRefGoogle Scholar
  20. Markowitz, H. M. (1959). Portfolio selection: efficient diversification of investments. New York: Wiley. Google Scholar
  21. Melville, P., & Mooney, R. J. (2005). Creating diversity in ensembles using artificial data. Information Fusion, 6(3), 1553–1563. Google Scholar
  22. Michaud, R. O., & Michaud, R. (2008). Estimation error and portfolio optimization: a resampling solution. Journal of Investment Management, 6(1), 8–28. Google Scholar
  23. Michaud, R. O. (1998). Efficient asset management: a practical guide to stock portfolio optimization and asset allocation. Oxford: Oxford University Press. Google Scholar
  24. Rasmussen, M. (2003). Quantitative portfolio optimisation, asset allocation and risk management (Finance and capital markets). Basingstoke: Palgrave Macmillan. Google Scholar
  25. Ridler, T., & Calvard, S. (1978). Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man and Cybernetics, 8(8), 630–632. CrossRefGoogle Scholar
  26. Rotaru, C., Graf, T., & Zhang, J. (2008). Color image segmentation in hsi space for automotive applications. Journal of Real-Time Image Processing, 1164–1173. Google Scholar
  27. Scherer, B. (2002). Portfolio construction and risk budgeting (Chap. 4). London: Rosk Books. Google Scholar
  28. Sharpe, W. (1994). The sharpe ratio. Journal of Portfolio Management, 21, 49–58. CrossRefGoogle Scholar
  29. Sigal, L., Sclaroff, S., & Athitsos, V. (2004). Skin color-based video segmentation under time-varying illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(7), 862–877. CrossRefGoogle Scholar
  30. Sobottka, K., & Pitas, I. (1998). A novel method for automatic face segmentation, facial feature extraction and tracking. Signal Processing: Image Communication, 12(3), 263–281. CrossRefGoogle Scholar
  31. Sotelo, M., Rodriguez, F., Magdalena, L., Bergasa, L., & Boquete, L. (2004). A color vision-based lane tracking system for autonomous driving in unmarked roads. Autonomous Robots, 16(1). Google Scholar
  32. Stokman, H., & Gevers, T. (2007). Selection and fusion of color models for image feature detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 371–381. CrossRefGoogle Scholar
  33. Tan, C., Hong, T., Chang, T., & Shneier, M. (2006). Color model-based real-time learning for road following. In Proceedings of the IEEE international conference on intelligent transport systems (pp. 939–944). Google Scholar
  34. Tax, D. M. J., & Duin, R. P. W. (2002). Uniform object generation for optimizing one-class classifiers. Journal of Machine Learning Research, 2, 155–173. MATHCrossRefGoogle Scholar
  35. Tse, Y. K. (1991). Stock returns volatility in the Tokyo stock exchange. Japan and the World Economy, 3(3), 285–298. CrossRefGoogle Scholar
  36. Usmen, N. M. H. (2003). Resampled frontiers versus diffuse Bayes: an experiment. Journal of Investment Management, 1(4), 1–17. Google Scholar
  37. van de Sande, K. E. A., Gevers, T., & Snoek, C. G. M. (2008). Evaluation of color descriptors for object and scene recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 453–464). Google Scholar
  38. Weber, M. (1999). The Caltech frontal face dataset. California Inst. of Tech., USA. http://www.vision.caltech.edu/html-files/archive.html. Accessed 1 March 2010.
  39. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83. CrossRefGoogle Scholar
  40. Wyszecki, G., & Stiles, W. (1982). Color science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jose M. Álvarez
    • 1
  • Theo Gevers
    • 2
    • 3
  • Antonio M. López
    • 1
  1. 1.Computer Vision Center and Computer Science Dpt.Universitat Autònoma de BarcelonaBellaterra (Cerdanyola) BarcelonaSpain
  2. 2.Intelligent Systems Lab. AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Computer Vision CenterBellaterra (Cerdanyola) BarcelonaSpain

Personalised recommendations