Advertisement

International Journal of Computer Vision

, Volume 89, Issue 1, pp 18–39 | Cite as

Full and Partial Symmetries of Non-rigid Shapes

  • Dan Raviv
  • Alexander M. Bronstein
  • Michael M. Bronstein
  • Ron Kimmel
Article

Abstract

Symmetry and self-similarity are the cornerstone of Nature, exhibiting themselves through the shapes of natural creations and ubiquitous laws of physics. Since many natural objects are symmetric, the absence of symmetry can often be an indication of some anomaly or abnormal behavior. Therefore, detection of asymmetries is important in numerous practical applications, including crystallography, medical imaging, and face recognition, to mention a few. Conversely, the assumption of underlying shape symmetry can facilitate solutions to many problems in shape reconstruction and analysis. Traditionally, symmetries are described as extrinsic geometric properties of the shape. While being adequate for rigid shapes, such a description is inappropriate for non-rigid ones: extrinsic symmetry can be broken as a result of shape deformations, while its intrinsic symmetry is preserved. In this paper, we present a generalization of symmetries for non-rigid shapes and a numerical framework for their analysis, addressing the problems of full and partial exact and approximate symmetry detection and classification.

Keywords

Symmetry Intrinsic Self-similarity Non-rigid Partiality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Mehlhorn, K., Wagener, H., & Welzl, E. (1988). Congruence, similarity, and symmetries of geometric objects. Discrete & Computational Geometry, 3, 237–256. zbMATHCrossRefMathSciNetGoogle Scholar
  2. Anguelov, D., Srinivasan, P., Pang, H. C., Koller, D., Thrun, S., & Davis, J. (2005). The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In Proc. NIPS, 2005. Google Scholar
  3. Atallah, M. J. (1985). On symmetry detection. IEEE Transactions on Computers, c-34(7). Google Scholar
  4. Borg, I., & Groenen, P. (1997). Modern multidimensional scaling—theory and applications. New York: Springer. zbMATHGoogle Scholar
  5. Bronstein, A. M., & Bronstein, M. M. (2008). Not only size matters: Regularized partial matching of nonrigid shapes. In Proc. non-rigid shape analysis and deformable image registration (NORDIA) workshop. Proc. of computer vision and pattern recognition (CVPR), June 2008. Google Scholar
  6. Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006). Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences (PNAS), 103/5, 1168–1172. CrossRefMathSciNetGoogle Scholar
  7. Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2007). Rock, Paper, and Scissors: extrinsic vs. intrinsic similarity of non-rigid shapes. In Proc. international conference on computer vision (ICCV), 2007. Google Scholar
  8. Bronstein, A., Bronstein, M., & Kimmel, R. (2008a). Numerical geometry of non-rigid shapes. Berlin: Springer. zbMATHGoogle Scholar
  9. Bronstein, A. M., Bronstein, M. M., Bruckstein, A. M., & Kimmel, R. (2008b). Analysis of two-dimensional non-rigid shapes. International Journal of Computer Vision, 78(1), 67–88. CrossRefGoogle Scholar
  10. Bronstein, A. M., Bronstein, M. M., Bruckstein, A. M., & Kimmel, R. (2009a). Partial similarity of objects, or how to compare a centaur to a horse. International Journal of Computer Vision, 84(2), 163–183. CrossRefGoogle Scholar
  11. Bronstein, A. M., Bronstein, M. M., Kimmel, R., Mahmoudi, M., & Sapiro, G. (2009b). A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision, to appear. Google Scholar
  12. Cheung, K. T., & Ip, H. S. (1998). Symmetry detection using complex moments. In Proc. international conference on pattern recognition (ICPR) (Vol. 2, pp. 1473–1475). Google Scholar
  13. Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Analysis, 21(1), 5–30. Definition of diffusion distance. zbMATHCrossRefMathSciNetGoogle Scholar
  14. Cornelius, H., & Loy, G. (2006). Detecting rotational symmetry under affine projection. In Proc. international conference on pattern recognition (ICPR) (Vol. 2, pp. 292–295). Google Scholar
  15. De Natale, F. G. B., Giusto, D. D., & Maccioni, F. (1997). A symmetry-based approach to facial features extraction. In Proc. international conference on digital signal processing (ICDSP) (Vol. 2, pp. 521–525). Google Scholar
  16. Derrode, S., & Ghorbel, F. (2004). Shape analysis and symmetry detection in gray-level objects using the analytical Fourier-Mellin representation. Signal Processing, 84(1), 25–39. zbMATHCrossRefGoogle Scholar
  17. Elad, A., & Kimmel, R. (2003). On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 25(10), 1285–1295. CrossRefGoogle Scholar
  18. Gal, Ran, Shamir, Ariel, & Cohen-Or, Daniel (2007). Pose-oblivious shape signature. IEEE Transactions on Visualization and Computer Graphics, 13(2), 261–271. CrossRefGoogle Scholar
  19. Gelfand, N., Mitra, N. J., Guibas, L. J., & Pottmann, H. (2005). Robust global registration. In Proc. symposium on geometry processing (SGP) (pp. 197–206). Google Scholar
  20. Gofman, Y., & Kiryati, N. (1996). Detecting symmetry in grey level images: The global optimization approach. In Proc. international conference on pattern recognition (ICPR) (pp. 951–956). Google Scholar
  21. Hamza, A. B., & Krim, H. (2005). Probabilistic shape descriptor for triangulated surfaces. In Proc. IEEE international conf. image processing (ICIP) (Vol. 1, pp. 1041–1044). Google Scholar
  22. Haraguchi, S., Takada, K., & Yasuda, Y. (2001). Facial asymmetry in subjects with skeletal class III deformity. Angle Orthodontist, 72(1), 28–35. Google Scholar
  23. Hochbaum, D., & Shmoys, D. (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research, 10(2), 180–184. zbMATHCrossRefMathSciNetGoogle Scholar
  24. Huisinga-Fischer, C. E., Souren, J. P., Werken, F. S. B., Prahl-Andersen, B., & van Ginkel, F. (2004). Perception of symmetry in the face. Journal of Craniofacial Surgery, 15(1), 128–134. CrossRefGoogle Scholar
  25. Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., & Rusinkiewicz, S. (2003). A reflective symmetry descriptor for 3D models. Algorithmica, 38(1), 201–225. CrossRefMathSciNetGoogle Scholar
  26. Kepler, J. (1611). Strena seu de nive sexangula. Frankfurt. Google Scholar
  27. Kimmel, R., & Sethian, J. A. (1998). Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences (PNAS), 95(15), 8431–8435. zbMATHCrossRefMathSciNetGoogle Scholar
  28. Lasowski, R., Tevs, A., Seidel, H. P., & Wand, M. (2009). A probabilistic framework for partial intrinsic symmetries in geometric data. In Proc. of international conference on computer vision (ICCV). Google Scholar
  29. Lévy, B. (2006). Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In Int’l conf. shape modeling and applications, 2006. Google Scholar
  30. Ling, H., & Jacobs, D. (2007). Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 29(2), 286–299. CrossRefGoogle Scholar
  31. Liu, R. F., Zhang, H., Shamir, A., & Cohen-Or, D. (2009) A part-aware surface metric for shape analysis. Computer Graphics Forum, 28, 397–406. CrossRefGoogle Scholar
  32. Liu, Y., Collins, R., & Tsin, Y. (2004). A computational model for periodic pattern perception based on frieze and wallpaper groups. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(3), 354–371. CrossRefGoogle Scholar
  33. Loy, G., & Eklundth, J. (2006). Detecting symmetry and symmetric constellations of features. In Proc. computer vision and pattern recognition (CVPR) (Vol. 2, pp. 508–521). Google Scholar
  34. Mahmoudi, M., & Sapiro, G. (2009). Three-dimensional point cloud recognition via distributions of geometric distances. Graphical Models, 71(1), 22–31. CrossRefGoogle Scholar
  35. Mancas, M., Gosselin, B., & Macq, B. (2005). Fast and automatic tumoral area localisation using symmetry. In Proc. international conference on acoustics, speech and signal processing (ICASSP) (Vol. 2, pp. 725–728). Google Scholar
  36. Marola, G. (1989). On the detection of axes of symmetry of symmetric and almost symmetric planner images. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 11(1). Google Scholar
  37. Mateus, D., Horaud, R., Knossow, D., & Boyer, E. (2008). Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In Proc. computer vision and pattern recognition (CVPR). Google Scholar
  38. Mealey, L., Bridgstock, R., & Townsend, G. C. (1999). Symmetry and perceived facial attractiveness: a monozygotic co-twin comparison. Journal of Personality and Social Psychology, 76(1), 151–158. CrossRefGoogle Scholar
  39. Mémoli, F. (2008). Gromov-Hausdorff distances in Euclidean spaces. In Proc. non-rigid shape analysis and deformable image registration (NORDIA) workshop. Proc. of computer vision and pattern recognition (CVPR). Google Scholar
  40. Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5, 313–346. zbMATHCrossRefMathSciNetGoogle Scholar
  41. Mitra, N. J., Guibas, L. J., & Pauly, M. (2006). Partial and approximate symmetry detection for 3D geometry. In Proc. international conference and exhibition on computer graphics and interactive techniques (SIGGRAPH) (pp. 560–568). Google Scholar
  42. Moenning, C., & Dodgson, N. (2003). A new point cloud simplification algorithm. In Proc. international conference on visualization, imaging and image processing. Google Scholar
  43. Mumford, D., & Shah, J. (1990). Boundary detection by minimizing functionals. In Proc. international conference on computer vision (ICCV). Google Scholar
  44. Ovsjanikov, M., Sun, J., & Guibas, L. (2008). Global intrinsic symmetries of shapes. In Proc. eurographics symposium on geometry processing (SGP) (Vol. 27). Google Scholar
  45. Peyré, G., & Cohen, L. (2006). Geodesic remeshing using front propagation. International Journal of Computer Vision (IJCV), 69(1), 145–156. CrossRefGoogle Scholar
  46. Pinkall, U., & Polthier, K. (1993). Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1), 15–36. zbMATHMathSciNetGoogle Scholar
  47. Raviv, D., Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2007). Symmetries of non-rigid shapes. In Proc. non-rigid registration and tracking (NRTL) workshop. Proc. of international conference on computer vision (ICCV). Google Scholar
  48. Reisfeld, D., & Yeshurun, Y. (1992). Robust detection of facial features by generalized symmetry. In Proc. international conference on pattern recognition (ICPR) (Vol. 1, pp. 117–120). Google Scholar
  49. Reuter, M., Wolter, F.-E., & Peinecke, N. (2006). Laplace Beltrami spectra as shape-DNA of surfaces and solids. Computer-Aided Design, 38, 342–366. CrossRefGoogle Scholar
  50. Riklin-Raviv, T., Sochen, N., & Kiryati, N. (2009). On symmetry, perspectivity, and level-set-based segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 31(8), 1458–1471. CrossRefGoogle Scholar
  51. Rustamov, R. M. (2007). Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proc. eurographics symposium on geometry processing (SGP) (pp. 225–233). Google Scholar
  52. Shimshoni, I., Moses, Y., & Lindernbaum, M. (2000). Shape reconstruction of 3D bilaterally symmetric surfaces. International Journal of Computer Vision, 39(2), 97–110. zbMATHCrossRefGoogle Scholar
  53. Sun, C., & Sherrah, J. (1997). 3D symmetry detection using the extended Gaussian image. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 19(2), 164–168. CrossRefGoogle Scholar
  54. Weyl, H. (1983). Symmetry. Princeton: Princeton University Press. Google Scholar
  55. Wolter, J. D., Woo, T. C., & Volz, R. A. (1985). Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer, 1, 37–48. zbMATHCrossRefGoogle Scholar
  56. Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., & Xiong, Y. (2009). Partial intrinsic reflectional symmetry of 3d shapes. In Proc. SIGGRAPH Asia. Google Scholar
  57. Yang, X., Adluru, N., Latecki, L. J., Bai, X., & Pizlo, Z. (2008). Symmetry of shapes via self-similarity. In Proc. international symposium on advances in visual computing (pp. 561–570). Google Scholar
  58. Zabrodsky, H., Peleg, S., & Avnir, D. (1995). Symmetry as a continuous feature. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 17(12), 1154–1166. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dan Raviv
    • 1
  • Alexander M. Bronstein
    • 1
  • Michael M. Bronstein
    • 1
  • Ron Kimmel
    • 1
  1. 1.Department of Computer ScienceTechnion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations