International Journal of Computer Vision

, Volume 88, Issue 3, pp 461–488 | Cite as

Image Comparison by Compound Disjoint Information with Applications to Perceptual Visual Quality Assessment, Image Registration and Tracking

  • Zhaohui Sun
  • Anthony Hoogs


In this paper, we study (normalized) disjoint information as a metric for image comparison and its applications to perceptual image quality assessment, image registration, and video tracking. Disjoint information is the joint entropy of random variables excluding the mutual information. This measure of statistical dependence and information redundancy satisfies more rigorous metric conditions than mutual information, including self-similarity, minimality, symmetry and triangle inequality. It is applicable to two or more random variables, and can be computed by vector histogramming, vector Parzen window density approximation, and upper bound approximation involving fewer variables. We show such a theoretic advantage does have implications in practice. In the domain of digital image and video, multiple visual features are extracted and (normalized) compound disjoint information is derived from a set of marginal densities of the image distributions, thus enriching the vocabulary of content representation. The proposed metric matching functions are applied to several domain applications to demonstrate their efficacy.


Disjoint information Image quality assessment Image registration Mutual information Similarity measures Video tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11263_2010_316_MOESM1_ESM.avi (304 kb)
Below is the link to the electronic supplementary material. (AVI 305 kB)
11263_2010_316_MOESM2_ESM.avi (305 kb)
Below is the link to the electronic supplementary material. (AVI 306 kB)


  1. Aczel, J., & Daroczy, Z. (1975). Measures of information and their characterizations. New York: Academic Press. zbMATHGoogle Scholar
  2. Bennett, C. H., Gacs, P., Li, M., Vitanyi, P. M. B., & Zurek, W. H. (1998). Information distance. IEEE Transactions on Information Theory, 44(4), 1407–1423. zbMATHCrossRefMathSciNetGoogle Scholar
  3. Bohm, C., Berchtold, S., & Keim, D. A. (2001). Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Computing Surveys, 33(3), 322–373. CrossRefGoogle Scholar
  4. Cover, T., & Thomas, J. (1991). Elements of information theory. New York: Wiley. zbMATHCrossRefGoogle Scholar
  5. Daly, S. (1993). The visible differences predictor: an algorithm for the assessment of image fidelity. In Watson, A. (Ed.), Digital images and human vision (pp. 179–206). Cambridge: MIT Press. Google Scholar
  6. Fano, R. M. (1961). Transmission of information: a statistical theory of communication. Cambridge: MIT Press. Google Scholar
  7. Han, T. S. (1980). Multiple mutual informations and multiple interactions in frequency data. Information and Control, 46(1), 26–45. zbMATHCrossRefMathSciNetGoogle Scholar
  8. Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804. CrossRefGoogle Scholar
  9. Horn, B. K. P., & Schunk, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203. CrossRefGoogle Scholar
  10. Huang, J., Kumar, S. R., Mitra, M., Zhu, W. J., & Zabih, R. (1999). Spatial color indexing and applications. International Journal of Computer Vision, 35(3), 245–268. CrossRefGoogle Scholar
  11. Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863. CrossRefGoogle Scholar
  12. Ibanez, L., Schroeder, W., Ng, L., & Cates, J. (2004). The ITK software guide: the insight segmentation and registration toolkit. Kitware. Google Scholar
  13. Kelly, D. H. (1979). Motion and vision. II. Stabilized spatio-temporal threshold surface. Journal of Optical Society of America, 69, 1340–1349. CrossRefGoogle Scholar
  14. Kunt, M., & van den Branden Lambrecht, C. (1998). Special issue on image and video quality metrics. Signal Processing 70(3). Google Scholar
  15. Li, M., Chen, X., Li, X., Ma, B., & Vitanyi, P. M. (2004). The similarity metric. IEEE Transactions on Information Theory, 50(12), 3250–3264. CrossRefMathSciNetGoogle Scholar
  16. Li, K., Chen, M., & Kanade, T. (2007). Cell population tracking and lineage construction with spatiotemporal context. In International conference on medical image computing and computer assisted intervention (MICCAI). Google Scholar
  17. Linde, Y., Buzo, A., & Gray, R. (1980). An algorithm for vector quantizer design. IEEE Transactions on Communications, 28(1), 84–95. CrossRefGoogle Scholar
  18. Lowe, D. G. (1995). Similarity metric learning for a variable-kernel classifier. Neural Computation, 7(1), 72–85. CrossRefGoogle Scholar
  19. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., & Seutens, P. (1997). Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16(2), 187–198. CrossRefGoogle Scholar
  20. Mallat, S. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693. zbMATHCrossRefGoogle Scholar
  21. Mannos, J. L., & Sakrison, D. J. (1974). The effects of a visual fidelity criterion on the encoding of images. IEEE Transactions on Information Theory, 20, 525–536. zbMATHCrossRefGoogle Scholar
  22. Mattes, D., Haynor, D., Vesselle, H., Lewellen, T., & Eubank, W. (2003). PET-CT image registration in the chest using free-form deformations. IEEE Transactions on Medical Imaging, 22(1), 120–128. CrossRefGoogle Scholar
  23. McGill, W. J. (1954). Multivariate information transmission. Psychometrika, 19, 97–116. zbMATHCrossRefGoogle Scholar
  24. McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: a survey. Medical Image Analysis, 1(2), 91–108. CrossRefGoogle Scholar
  25. Mundy, J. L., & Chang, C. F. (2004). Fusion of intensity, texture, and color in video tracking based on mutual information. In Proceedings of the 33rd applied imagery pattern recognition workshop (AIPR’04) (pp. 10–15). Washington: IEEE Computer Society. CrossRefGoogle Scholar
  26. Pluim, J. P. W., Maintz, J. B. A., & Viergever, M. A. (2003). Mutual-information-based registration of medical images: a review. IEEE Transactions on Medical Imaging, 22(8), 986–1004. CrossRefGoogle Scholar
  27. Rajski, C. (1961). A metric space of discrete probability distributions. Information and Control, 4(4), 371–377. CrossRefMathSciNetGoogle Scholar
  28. Rohaly, A. et al. (2000). Video quality experts group: current results and future directions. In SPIE visual communications and image processing (vol. 4067, pp. 742–753). Google Scholar
  29. Rubner, Y., Puzicha, J., Tomasi, C., & Buhmann, J. M. (2001). Empirical evaluation of dissimilarity measures for color and texture. Computer Vision and Image Understanding, 84(1), 25–43. zbMATHCrossRefGoogle Scholar
  30. Santini, S., & Jain, R. (1999). Similarity matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9), 871–883. CrossRefGoogle Scholar
  31. Schiele, B., & Crowley, J. (2000). Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision, 36(1), 31–50. CrossRefGoogle Scholar
  32. Schwartzkopf, W., Bovik, A., & Evans, B. (2005). Maximum-likelihood techniques for joint segmentation-classification of multispectral chromosome images. IEEE Transactions on Medical Imaging, 24(12), 1593–1610. CrossRefGoogle Scholar
  33. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656. zbMATHMathSciNetGoogle Scholar
  34. Sheikh, H., Sabir, M., & Bovik, A. (2006a). A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 15(11), 3440–3451. CrossRefGoogle Scholar
  35. Sheikh, H. R., Wang, Z., Cormack, L., & Bovik, A. C. (2006b). Live image quality assessment database release 2.
  36. Studholme, C., Hill, D. L. G., & Hawkes, D. J. (1999). An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition, 32(1), 71–86. CrossRefGoogle Scholar
  37. Sun, Z. (2003). Adaptation for multiple cue integration. In IEEE international conference on computer vision and pattern recognition (vol. I, pp. 440–445), Madison, WI. Google Scholar
  38. Sun, Z. (2006). Video halftoning. IEEE Transactions on Image Processing, 15(3), 678–686. CrossRefGoogle Scholar
  39. Sun, Z., & Hoogs, A. (2006). Image comparison by compound disjoint information. In IEEE international conference on computer vision and pattern recognition (pp. 857–862), New York, NY. Google Scholar
  40. Sun, Z., & Ray, L. A. (2005). Multimodal image registration based on compound mutual information. In SPIE medical imaging conference (vol. 5747, pp. 1274–1282), San Diego, CA. Google Scholar
  41. Swain, M., & Ballard, D. (1991). Color indexing. International Journal of Computer Vision, 7(1), 11–32. CrossRefGoogle Scholar
  42. Teo, P., & Heeger, D. (1994). Perceptual image distortion. In IEEE international conference on image processing (Vol. 2, pp. 982–986). Google Scholar
  43. Thevenaz, P., & Unser, M. (2000). Optimization of mutual information for multiresolution image registration. IEEE Transactions Image Processing, 9(12), 2083–2099. zbMATHCrossRefGoogle Scholar
  44. Tversky, A. (1977). Features of similarity. Psychological Review, 84(2), 327–352. CrossRefGoogle Scholar
  45. Viola, P., & Wells, III W. M. (1997). Alignment by maximization of mutual information. International Journal of Computer Vision, 24(2), 137–154. CrossRefGoogle Scholar
  46. VQEG. (2000). Final report from the video quality experts group on the validation of objective models of video quality assessment.
  47. Wandell, B. A. (1995). Foundations of vision. Sunderland: Sinauer Associates. Google Scholar
  48. Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. CrossRefGoogle Scholar
  49. Wells, III, W. M., Viola, P., Atsumi, H., Nakajima, S., & Kikinis, R. (1996). Multi-modal volume registration by maximization of mutual information. Medical Image Analysis, 1(1), 35–51. CrossRefGoogle Scholar
  50. Winkler, S. (1999). Issues in vision modeling for perceptual video quality assessment. Signal Processing, 78(2), 231–252. zbMATHCrossRefGoogle Scholar
  51. Wu, B., & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. International Journal of Computer Vision, 75(2), 247–266. CrossRefGoogle Scholar
  52. Yianilos, P. N. (1991). Normalized forms for two common metrics (Technical Report 91-082-9027-1). NEC Research Institute. Google Scholar
  53. Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: a survey. ACM Computing Surveys, 38(4), 1–45. CrossRefGoogle Scholar
  54. Zhang, J., & Rangarajan, A. (2004). Affine image registration using a new information metric. In: IEEE international conference on computer vision and pattern recognition (vol. 1, pp. 848–855). Google Scholar
  55. Zhang, J., & Rangarajan, A. (2005). Multimodality image registration using an extensible information metric and high dimensional histogramming. In: International conference on information processing in medical imaging (pp. 725–737), Glenwood Springs, CO. Google Scholar
  56. Zurek, W. H. (1989). Thermodynamic cost of computation, algorithmic complexity and the information metric. Nature, 341, 119–124. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Visualization and Computer Vision LabGE Global ResearchNiskayunaUSA
  2. 2.Kitware Inc.Clifton ParkUSA

Personalised recommendations