Advertisement

International Journal of Computer Vision

, Volume 88, Issue 3, pp 382–403 | Cite as

Shape-based Invariant Texture Indexing

  • Gui-Song XiaEmail author
  • Julie Delon
  • Yann Gousseau
Article

Abstract

This paper introduces a new texture analysis scheme, which is invariant to local geometric and radiometric changes. The proposed methodology relies on the topographic map of images, obtained from the connected components of level sets. This morphological tool, providing a multi-scale and contrast-invariant representation of images, is shown to be well suited to texture analysis. We first make use of invariant moments to extract geometrical information from the topographic map. This yields features that are invariant to local similarities or local affine transformations. These features are invariant to any local contrast change. We then relax this invariance by computing additional features that are invariant to local affine contrast changes and investigate the resulting analysis scheme by performing classification and retrieval experiments on three texture databases. The obtained experimental results outperform the current state of the art in locally invariant texture analysis.

Topographic map Level lines Texture analysis Local invariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, A., Miyagawa, M., & Fujio, M. (2000). Texture modelling by optimal gray scale structuring elements using morphological pattern spectrum. In Proc. international conference on pattern recognition (pp. III: 475–478). Google Scholar
  2. Ayala, G., & Domingo, J. (2001). Spatial size distributions: applications to shape and texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(12), 1430–1442. CrossRefGoogle Scholar
  3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., & Osher, S. (2007). Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28(2), 151–167. CrossRefMathSciNetGoogle Scholar
  4. Brodatz, P. (1966). Textures: a photographic album for artists and designers. New York: Dover. Google Scholar
  5. Caselles, V., & Monasse, P. (2009). Geometric description of topographic maps and applications to image processing. Lecture notes in mathematics. Berlin: Springer. Google Scholar
  6. Caselles, V., Coll, B., & Morel, J. (1997). Scale space versus topographic map for natural images. In Proc. international conference on scale-space theory in computer vision (Vol. 11, pp. 29–49). Google Scholar
  7. Caselles, V., Coll, B., & Morel, J.-M. (1999a). Topographic maps and local contrast changes in natural images. International Journal of Computer Vision, 33(1), 5–27. CrossRefMathSciNetGoogle Scholar
  8. Caselles, V., Lisani, J.-L., Morel, J.-M., & Sapiro, G. (1999b). Shape preserving local histogram modification. IEEE Transactions on Image Processing, 8(2), 220–230. CrossRefGoogle Scholar
  9. Chen, C. H. (1982). A study of texture classification using spectral features. In Proc. international conference on pattern recognition. Google Scholar
  10. Chen, Y., & Dougherty, E. (1994). Gray-scale morphological granulometric texture classification. Optical Engineering, 33(8), 2713–2722. CrossRefGoogle Scholar
  11. Chen, J., & Kundu, A. (1994). Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(2), 208–214. CrossRefGoogle Scholar
  12. Cohen, F. S., Fan, Z., & Patel, M. A. (1991). Classification of rotated and scaled textured images using Gaussian Markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2), 192–202. CrossRefGoogle Scholar
  13. Dana, K., Van-Ginneken, B., Nayar, S., & Koenderink, J. (1999). Reflectance and texture of real world surfaces. ACM Transactions on Graphics (TOG), 18(1), 1–34. CrossRefGoogle Scholar
  14. Davis, L. (1981). Polarograms: a new tool for image texture analysis. Pattern Recognition, 13(3), 219–223. CrossRefGoogle Scholar
  15. Davis, L., Johns, S., & Aggarwal, J. (1979). Texture analysis using generalized co-occurrence matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(3), 251–259. CrossRefGoogle Scholar
  16. Do, M. N., & Vetterli, M. (2002). Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models. IEEE Transactions on Multimedia, 4(4), 517–527. CrossRefGoogle Scholar
  17. Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In Proc. IEEE international conference on computer vision. Corfu, Greece, September 1999 (pp. 1033–1038). Google Scholar
  18. Fletcher, N., & Evans, A. (2005). Texture segmentation using area morphology local granulometries. Proceedings International Symposium on Mathematical Morphology, 30, 367–376. Google Scholar
  19. Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345. CrossRefGoogle Scholar
  20. Flusser, J., & Suk, T. (1993). Pattern recognition by affine moment invariants. Pattern Recognition, 26, 167–174. CrossRefMathSciNetGoogle Scholar
  21. Gidas, B. (1989). A renormalization group approach to image processing problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(2), 164–180. zbMATHCrossRefGoogle Scholar
  22. Gousseau, Y. (2002). Texture synthesis through level sets. In Proc. international workshop on texture analysis and synthesis, Copenhagen (pp. 53–57). Google Scholar
  23. Haas, A., Matheron, G., & Serra, J. (1967). Morphologie mathématique et granulométries en place. Annales des Mines, 11, 736–753. Google Scholar
  24. Hamdan, H. M., & Larson, L. M. (2002). Texture classification through level lines. In Proc. international conference on image processing (pp. 937–940). Google Scholar
  25. Hanbury, A., Kandaswamy, U., & Adjeroh, D. A. (2005). Illumination-invariant morphological texture classification. Proceedings International Symposium on Mathematical Morphology, 30, 377–386. Google Scholar
  26. Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804. CrossRefGoogle Scholar
  27. Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621. CrossRefGoogle Scholar
  28. Heijmans, H. J. A. M. (1999). Connected morphological operators for binary images. Computer Vision and Image Understanding, 73, 99–120. zbMATHCrossRefGoogle Scholar
  29. Houhou, N., Thiran, J., & Bresson, X. (2008). Fast texture segmentation model based on the shape operator and active contour. In Proc. computer vision and pattern recognition. Google Scholar
  30. Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8, 179–187. Google Scholar
  31. Jain, A. K., & Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24(12), 1167–1186. CrossRefGoogle Scholar
  32. Kaizer, H. (1955). A quantification of textures on aerial photographs (Tech. Rep. 121), Boston University. Google Scholar
  33. Kashyap, R. L., & Khotanzad, A. (1986). A model-based method for rotation invariant texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(4), 472–481. CrossRefGoogle Scholar
  34. Lazebnik, S., Schmid, C., & Ponce, J. (2003). Affine-invariant local descriptors and neighborhood statistics for texture recognition. In Proc. international conference on computer vision (pp. 649–655). Google Scholar
  35. Lazebnik, S., Schmid, C., & Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1265–1278. CrossRefGoogle Scholar
  36. Leung, T., & Malik, J. (2001). Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 43(1), 29–44. zbMATHCrossRefGoogle Scholar
  37. Li, F.-F., & Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. In Proc. computer vision and pattern recognition (pp. II: 524–531). Google Scholar
  38. Li, W., Haese Coat, V., & Ronsin, J. (1997). Residues of morphological filtering by reconstruction for texture classification. Pattern Recognition, 30(7), 1081–1093. CrossRefGoogle Scholar
  39. Liao, S., & Pawlak, M. (1996). On image-analysis by moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(3), 254–266. CrossRefGoogle Scholar
  40. Luo, B., Aujol, J.-F., Gousseau, Y., & Ladjal, S. (2008). Indexing of satellite images with different resolutions by wavelet features. IEEE Transactions on Image Processing, 17(8), 1465–1472. CrossRefMathSciNetGoogle Scholar
  41. Luo, B., Aujol, J.-F., & Gousseau, Y. (2009). Local scale measure from the topographic map and application to remote sensing images. SIAM Multiscale Modeling and Simulation, 8(1), 1–29. zbMATHCrossRefMathSciNetGoogle Scholar
  42. Maragos, P. (1989). Pattern spectrum and multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 701–716. zbMATHCrossRefGoogle Scholar
  43. Matas, J., Chum, O., Martin, U., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In Proc. British machine vision conference, London (Vol. 1, pp. 384–393). Google Scholar
  44. Mellor, M., Hong, B.-W., & Brady, M. (2008). Locally rotation, contrast, and scale invariant descriptors for texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 52–61. CrossRefGoogle Scholar
  45. Meyer, Y. (2007). In Workshop: An interdisciplinary approach to textures and natural images processing. Institut Henri Poincaré, Paris, January 2007. Google Scholar
  46. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., & Van Gool, L. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(1–2), 43–72. CrossRefGoogle Scholar
  47. Monasse, P. (1999). Contrast invariant registration of images. In Proc. international conference on acoustics, speech and signal processing (pp. 3221–3224). Google Scholar
  48. Monasse, P. (2000). Morphological representation of digital images and application to registration. Ph.D. dissertation, Paris-Dauphine University, June. Google Scholar
  49. Monasse, P., & Guichard, F. (2000a). Fast computation of a contrast invariant image representation. IEEE Transactions on Image Processing, 9(5), 860–872. CrossRefGoogle Scholar
  50. Monasse, P., & Guichard, F. (2000b). Scale-space from a level lines tree. Journal of Visual Communication and Image Representation, 11(2), 224–236. CrossRefGoogle Scholar
  51. Obdrzálek, S., & Matas, J. (2002). Object recognition using local affine frames on distinguished regions. In Proc. British machine vision conference (pp. 113–122). Google Scholar
  52. Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987. CrossRefGoogle Scholar
  53. Peleg, S., Naor, J., Hartley, R., & Avnir, D. (1984). Multiple resolution texture analysis and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(4), 518–523. CrossRefGoogle Scholar
  54. Peyré, G. (2009). Texture synthesis with grouplets. IEEE Transactions on Pattern Analysis and Machine Intelligence, to appear. Google Scholar
  55. Pietikäinen, M., Ojala, T., & Xu, Z. (2000). Rotation-invariant texture classification using feature distributions. Pattern Recognition, 33(1), 43–52. CrossRefGoogle Scholar
  56. Pun, C.-M., & Lee, M.-C. (2003). Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 590–603. CrossRefGoogle Scholar
  57. Randen, T., & Husoy, J. H. (1999). Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), 291–310. CrossRefGoogle Scholar
  58. Reed, T. R., & du Buf, J. M. H. (1993). A review of recent texture segmentation and feature extraction techniques. Computer Vision, Graphics and Image Processing: Image Understanding, 57(3), 359–372. CrossRefGoogle Scholar
  59. Salembier, P., & Serra, J. (1995). Flat zones filtering, connected operators, and filters by reconstruction. IEEE Transactions on Image Processing, 4(8), 1153–1160. CrossRefGoogle Scholar
  60. Sandler, R., & Lindenbaum, M. (2009). Optimizing Gabor filter design for texture edge detection and classification. International Journal of Computer Vision, 84(3), 308–324. CrossRefGoogle Scholar
  61. Schaffalitzky, F., & Zisserman, A. (2001). Viewpoint invariant texture matching and wide baseline stereo. In Proc. international conference on computer vision (Vol. 2, pp. 636–643). Google Scholar
  62. Serra, J. (1982). Image analysis and mathematical morphology. New York: Academic Press. zbMATHGoogle Scholar
  63. Simoncelli, E. P., & Portilla, J. (1998). Texture characterization via joint statistics of wavelet coefficient magnitudes. In Proc. international conference on image processing (pp. 4–7). Google Scholar
  64. Song, Y. (2007). A topdown algorithm for computation of level line trees. IEEE Transactions on Image Processing, 16(8), 2107–2116. CrossRefMathSciNetGoogle Scholar
  65. Tenenbaum, J. B., Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. CrossRefGoogle Scholar
  66. Tuceryan, M., & Jain, A. K. (1993). Texture analysis. In Handbook of pattern recognition and computer vision (pp. 235–276). Google Scholar
  67. Urbach, E. R., Roerdink, J. B. T. M., & Wilkinson, M. H. F. (2007). Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 272–285. CrossRefGoogle Scholar
  68. Varma, M., & Garg, R. (2007). Locally invariant fractal features for statistical texture classification. In Proc. international conference on computer vision (pp. 1–8). Google Scholar
  69. Varma, M., & Ray, D. (2007). Learning the discriminative power-invariance trade-off. In Proc. international conference on computer vision (pp. 14–21). Google Scholar
  70. Varma, M., & Zisserman, A. (2002). Classifying images of materials: achieving viewpoint and illumination independence. In Proc. European conference on computer vision (pp. III: 255–271). Google Scholar
  71. Wu, J., & Chantler, M. (2003). Combining gradient and albedo data for rotation invariant classification of 3D surface texture. In Proc. international conference on computer vision (pp. 848–855). Google Scholar
  72. Xia, G.-S. (2009). Invariant texture analysis web page [Online]. Available: http://www.tsi.enst.fr/~xia/texture.html.
  73. Xia, G.-S., Delon, J., & Gousseau, Y. (2008). Locally invariant texture analysis from the topographic map. In Proc. international conference on pattern recognition. Google Scholar
  74. Xu, Y., Ji, H., & Fermuller, C. (2006). A projective invariant for textures. In Proc. computer vision and pattern recognition (pp. 1932–1939). Google Scholar
  75. Xu, Y., Ji, H., & Fermuller, C. (2009). Viewpoint invariant texture description using fractal analysis. International Journal of Computer Vision, 83(1), 85–100. CrossRefGoogle Scholar
  76. Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19. zbMATHCrossRefGoogle Scholar
  77. Zhang, J., & Tan, T. (2002). Brief review of invariant texture analysis methods. Pattern Recognition, 35(3), 735–747. zbMATHCrossRefMathSciNetGoogle Scholar
  78. Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision, 73(2), 213–238. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Telecom ParisTech, LTCI CNRSParisFrance

Personalised recommendations