International Journal of Computer Vision

, Volume 89, Issue 2–3, pp 408–431 | Cite as

Learning Robust Similarity Measures for 3D Partial Shape Retrieval

  • Yi Liu
  • Xu-Lei Wang
  • Hua-Yan Wang
  • Hongbin Zha
  • Hong Qin
Article

Abstract

In this paper, we propose a novel approach to learning robust ground distance functions of the Earth Mover’s distance to make it appropriate for quantifying the partial similarity between two feature-sets. First, we define the ground distance as a monotonic transformation of commonly used feature-to-feature base distance (or similarity) measures, so that in computing the Earth Mover’s distance, the algorithm could better turn its focus on the feature pairs that are correctly matched, while being less affected by irrelevant ones. As a result, the proposed method is especially suited for 3D partial shape retrieval where occlusion and clutter are serious problems. We prove that when the transformation satisfies certain conditions, the metric property of the base distance is sufficient to guarantee the ground distance is a metric (and so is the Earth Mover’s distance), which makes fast shape retrieval on large databases technically possible. Second, we propose a discriminative learning framework to optimize the transformation function based on the real Adaboost algorithm. The optimization is performed in the space of the piecewise constant approximations of the transformation without making any parametric assumption. Finally, extensive experiments on 3D partial shape retrieval convincingly demonstrate the effectiveness of the proposed techniques.

Keywords

Partial similarity measure 3D shape retrieval Earth mover’s distance Adaboost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athitsos, V., Alon, J., Sclaroff, S., & Kollios, G. (2004). BoostMap: a method for efficient approximate similarity rankings. In Proceedings of IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 268–275), June 2004. Google Scholar
  2. Athitsos, V., Hadjieleftheriou, M., Kollios, G., & Sclaroff, S. (2005). Query-sensitive embeddings. In Proceeding of ACM SIGMOD conference (pp. 706–717), June 2005. Google Scholar
  3. Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape context. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 509–522. CrossRefGoogle Scholar
  4. Berretti, S., Del Bimbo, A., & Pala, P. (2000). Retrieval by shape similarity with perceptual distance and effective indexing. IEEE Transactions on Multimedia, 2(4), 225–239. CrossRefGoogle Scholar
  5. Bespalov, D., Shokoufandeh, A., Regli, W. C., & Sun, W. (2003). Scale space representation of 3D models and topological matching. In Proceedings of symposium on solid modeling and applications (pp. 208–215). Google Scholar
  6. Biasotti, S., Marini, S., Spagnuolo, M., & Falcidieno, B. (2006). Sub-part correspondence by structural descriptors of 3D shapes. Computer Aided Design, 38(9), 1002–1019. CrossRefGoogle Scholar
  7. Bourgain, J. (1985). On Lipschitz embedding of finite metric spares in Hilbert space. Israel Journal of Mathematics, 52(1–2), 46–52. MATHCrossRefMathSciNetGoogle Scholar
  8. Bustos, B., Keim, D. A., Saupe, D., Schreck, T., & Vranic, D. V. (2006). An experimental effectiveness comparison of methods for 3D similarity search. International Journal on Digital Libraries, 6(1), 39–54. CrossRefGoogle Scholar
  9. Cornea, N. D., Demirci, M. F., Silver, D., Shokoufandeh, A., Dickinson, S. J., & Kantor, P. B. (2005). 3D object retrieval using many-to-many matching of curve skeletons. In Proceedings of international conference on shape modeling and applications (pp. 368–373). Google Scholar
  10. Datar, K. M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004). Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of ACM symposium on computational geometry (pp. 253–262). Google Scholar
  11. Davis, J. V., Kulis, B., Jain, P., Sra, S., & Dhillon, I. S. (2007). Information-theoretic metric learning. In Proceedings of the 24th international conference on machine learning. Google Scholar
  12. Funkhouser, T., & Shilane, P. (2006). Partial matching of 3D shapes with priority-driven search. In Proceedings of symposium on geometry processing (pp. 131–142). Google Scholar
  13. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., & Jacobs, D. (2003). A search engine for 3D models. ACM Transactions on Graphics, 22(1), 83–105. CrossRefGoogle Scholar
  14. Gal, R., & Cohen-Or, D. (2006). Salient geometric features for partial shape matching and similarity. ACM Transactions on Graph, 25(1), 130–150. CrossRefGoogle Scholar
  15. Grauman, K., & Darrell, T. (2005a). Efficient image matching with distributions of local invariant features. In Proceedings of IEEE conference on computer vision and pattern recognition (vol. 2, pp. 627–634). Google Scholar
  16. Grauman, K., & Darrell, T. (2005b). The pyramid match kernel: discriminative classification with sets of image features. In Proceedings of international conference on computer vision (pp. 1458–1465). Google Scholar
  17. Grauman, K., & Darrell, T. (2007a). Approximate correspondences in high dimensions. In Proceedings of advances in neural information processing systems 19 (NIPS) (pp. 505–512). Google Scholar
  18. Grauman, K., & Darrell, T. (2007b). The pyramid match kernel: efficient learning with sets of features. Journal of Machine Learning Research, 8, 725–760. Google Scholar
  19. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. New York: Springer. MATHGoogle Scholar
  20. Huttenlocher, D., & Felzenszwalb, P. (2005). Pictorial structures for object recognition. International Journal of Computer Vision, 61(1), 55–79. CrossRefGoogle Scholar
  21. Indyk, P., & Thaper, N. (2003). Fast image retrieval via embeddings. In 3rd international workshop on statistical and computational theories of vision, Nice, France, October 2003. Google Scholar
  22. Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems, 20(4), 422–446. CrossRefGoogle Scholar
  23. Johnson, A. E., & Hebert, M. (1999). Using spin-images for efficient multiple model recognition in cluttered 3-D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 443–449. CrossRefGoogle Scholar
  24. Kim, H.-K., & Kim, J.-D. (2000). Region-based shape descriptor invariant to rotation, scale and translation. Signal Processing: Image Communications, 16(1–2), 87–93. CrossRefGoogle Scholar
  25. Ling, H., & Okada, K. (2006). Diffusion distance for histogram comparison. In Proceedings of IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 246–253), June 2006. Google Scholar
  26. Ling, H., & Okada, K. (2007). An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5), 840–853. CrossRefGoogle Scholar
  27. Liu, Y., Zha, H., & Qin, H. (2006a). Shape topics: a compact representation and algorithms for 3D partial shape retrieval. In Proceedings of IEEE international conference on computer vision and pattern recognition (Vol. 2, pp. 2025–2032). Google Scholar
  28. Liu, Y., Zha, H., & Qin, H. (2006b). The generalized shape distributions for shape matching and analysis. In Proceedings of international conference on shape modeling and applications (Vol. 16). Google Scholar
  29. Liu, Y., Wang, X.-L., & Zha, H. (2008). Dimension amnesic pyramid match kernel. In Proceedings of the twenty third AAAI conference on artificial intelligence (pp. 652–658). Google Scholar
  30. Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal on Computer Vision, 60(2), 91110. CrossRefGoogle Scholar
  31. Marini, S., Paraboschi, L., & Biasotti, S. (2007). SHape REtrieval Contest 2007 (SHREC07): partial matching track: In R. C. Veltkamp, F. B. ter Haar (Eds.), SHREC2007: 3D shape retrieval contest (Technical report UU-CS-2007-015). Google Scholar
  32. Mikolajczyk, K., & Schmid, C. (2001). Indexing based on scale invariant interest points. In Proceedings of international conference on computer vision (pp. 525–531). Google Scholar
  33. Nister, D., & Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In Proceedings of IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 2161–2168), June 2006. Google Scholar
  34. Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics, 21(4), 807–832. CrossRefGoogle Scholar
  35. Rote, G. (1991). Computing the minimum Hausdorff distance between two point sets on a line under translation. Information Processing Letters, 38, 123–127. MATHCrossRefMathSciNetGoogle Scholar
  36. Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99–121. MATHCrossRefGoogle Scholar
  37. Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3), 297–336. MATHCrossRefGoogle Scholar
  38. Shan, Y., Sawhney, H. S., Matei, B., & Kumar, R. (2006). Shapeme histogram projection and matching for partial object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 568–577. CrossRefGoogle Scholar
  39. Shilane, P., & Funkhouser, T. A. (2007). Distinctive regions of 3D surfaces. ACM Transactions on Graph, 26(2). Google Scholar
  40. Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Proceedings of international conference on shape modeling and applications (pp. 167–178). Google Scholar
  41. Sivic, J., & Zisserman, A. (2003). Video google: a text retrieval approach to object matching in videos. In Proceedings of international conference on computer vision (pp. 1470–1477). Google Scholar
  42. Tangelder, J. W. H., & Veltkamp, R. C. (2003). Polyhedral model retrieval using weighted point sets. International Journal of Image and Graphics, 3(1), 209–229. CrossRefGoogle Scholar
  43. Tangelder, J. W. H., & Veltkamp, R. C. (2008). A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications, 39(3), 441–471. CrossRefGoogle Scholar
  44. Vranic, D. V. (2003). An improvement of rotation invariant 3D-shape based on functions on concentric spheres. In Proceedings of international conference on image processing (Vol. 3, pp. 757–760. Google Scholar
  45. Wang, X.-L., Liu, Y., & Zha, H. (2009). Learning robust cross-bin similarities for the bag-of-features model. Technical report, available at http://www.cis.pku.edu.cn/vision/Visual&Robot/people/wang/pubs/tr2009_draft.pdf.
  46. Weston, J., Scholkopf, B., Eskin, E., Leslie, C., & Noble, W. (2003). Dealing with large diagonals in kernel matrices. Annals of the Institute of Statistical Mathematics, 55(2), 391–408. MATHMathSciNetGoogle Scholar
  47. Winn, J., Criminisi, A., & Minka, T. (2005). Object categorization by learned universal visual dictionary. In Proceedings of international conference on computer vision (pp. 1800–1807). Google Scholar
  48. Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal on Computer Vision, 73(2), 213–238. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yi Liu
    • 1
    • 2
  • Xu-Lei Wang
    • 1
  • Hua-Yan Wang
    • 3
  • Hongbin Zha
    • 1
  • Hong Qin
    • 4
  1. 1.Key Laboratory of Machine Perception (Ministry of Education)Peking UniversityBeijingChina
  2. 2.Chinese Academy of Sciences Key Laboratory of Molecular Developmental BiologyCenter for Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
  3. 3.Department of Computer Science and EngineeringHong Kong University of Science and TechnologyHong KongChina
  4. 4.Department of Computer ScienceState University of New York at Stony BrookStony BrookUSA

Personalised recommendations