Advertisement

International Journal of Computer Vision

, Volume 89, Issue 2–3, pp 130–151 | Cite as

Rectilinearity of 3D Meshes

  • Zhouhui LianEmail author
  • Paul L. Rosin
  • Xianfang Sun
Article

Abstract

In this paper, we propose and evaluate a novel shape measure describing the extent to which a 3D polygon mesh is rectilinear. The rectilinearity measure is based on the maximum ratio of the surface area to the sum of three orthogonal projected areas of the mesh. It has the following desirable properties: 1) the estimated rectilinearity is always a number from (0,1]; 2) the measure is invariant under scale, rotation, and translation; 3) the 3D objects can be either open or closed meshes, and we can also deal with degenerate meshes; 4) the measure is insensitive to noise, stable under small topology errors, and robust against face deletion and mesh simplification. Moreover, a genetic algorithm (GA) can be applied to compute the approximate rectilinearity efficiently. We find that the calculation of rectilinearity can be used to normalize the pose of 3D meshes, and in many cases it performs better than the principal component analysis (PCA) based method. By applying a simple selection criterion, the combination of these two methods results in a new pose normalization algorithm which not only provides a higher successful alignment rate but also corresponds better with intuition. Finally, we carry out several experiments showing that both the rectilinearity based pose normalization preprocessing and the combined signatures, which consist of the rectilinearity measure and other shape descriptors, can significantly improve the performance of 3D shape retrieval.

Keywords

Rectilinearity Shape measurement 3D shape retrieval Pose normalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankerst, M., Kastenmuller, G., Kriegel, H., & Seidl, T. (1999). Nearest neighbor classification in 3D protein databases. In Proc. the seventh international conference on intelligent systems for molecular biology (pp. 34–43). Google Scholar
  2. Bribiesca, E. (2008). An easy measure of compactness for 2D and 3D shapes. Pattern Recognition, 41(2), 543–554. zbMATHCrossRefGoogle Scholar
  3. Bustos, B., Keim, D., Saupe, D., Schreck, T., & Vranić, D. (2005). An experimental effectiveness comparison of methods for 3D similarity search. International Journal on Digital Libraries 6(1), 39–54. CrossRefGoogle Scholar
  4. Chaouch, M., & Blondet, A. (2006). Enhanced 2D/3D approaches based on relevance index for 3D-shape retrieval. In Proc. IEEE international conference on shape modeling and applications (SMI 2006) (pp. 36–36). Google Scholar
  5. Chaouch, M., & Blondet, A. (2007). A new descriptor for 2D depth image indexing and 3D model retrieval. In Proc. IEEE international conference on image processing (ICIP 2007) (Vol. 6, pp. 373–376). Google Scholar
  6. Chaouch, M., & Blondet, A. (2008). A novel method for alignment of 3D models. In Proc. IEEE international conference on shape modeling and applications (SMI 2008) (pp. 187–195). Google Scholar
  7. Chen, D. Y., Tian, X. P., Shen, Y. T., & Ouhyoung, M. (2003). On visual similarity based 3D model retrieval. In Proc. Eurographics 2003 (Vol. 22, pp. 223–232). Google Scholar
  8. Corney, J., Rea, H., Clark, D., Pritchard, J., Breaks, M., & MacLeod, R. (2002). Coarse filters for shape matching. IEEE Computer Graphics and Applications, 22(3), 65–74. CrossRefGoogle Scholar
  9. Fink, E., & Wood, D. (1996). Fundamentals of restricted-orientation convexity. Information Sciences, 92(1), 175–196. zbMATHCrossRefMathSciNetGoogle Scholar
  10. Fu, H., Cohen-Or, D., Dror, G., & Sheffer, A. (2008). Upright orientation of man-made objects. In Proc. international conference on computer graphics and interactive techniques (ACM SIGGRAPH 2008). Google Scholar
  11. Gal, R., Shamir, A., & Cohen-Or, D. (2007). Pose-oblivious shape signature. IEEE Transactions Visualization and Computer Graphics, 13(2), 261–271. CrossRefGoogle Scholar
  12. Haralick, R. M. (1974). A measure for circularity of digital figures. IEEE Trans. Systems, Man, and Cybernetics, 4, 394–396. zbMATHGoogle Scholar
  13. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. Cambridge: MIT. Google Scholar
  14. Kazhdan, M. (2007). An approximate and efficient method for optimal rotation alignment of 3D models. IEEE Transactions Pattern Analysis and. Machine Intelligence, 29(7), 1221–1229. CrossRefGoogle Scholar
  15. Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., & Rusinkiewicz, S. (2003). A reflective symmetry descriptor for 3D models. Algorithmica, 38(1), 201–225. CrossRefMathSciNetGoogle Scholar
  16. Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. 2003 Eurographics/ACM SIGGRAPH symposium on geometry processing (Vol. 43, pp. 156–164). Google Scholar
  17. Krinidis, S., & Chatzis, V. (2008). Principal axes estimation using the vibration modes of physics-based deformable models. IEEE Trans. Image Processing, 17(6), 1007–1019. CrossRefMathSciNetGoogle Scholar
  18. Laga, H., Takahashi, H., & Nakajima, M. (2006). Spherical wavelet descriptors for content-based 3D model retrieval. In Proc. IEEE international conference on shape modeling and applications (SMI 2006) (pp. 15–15). Google Scholar
  19. Lee, C. H., Varshney, A., & Jacobs, D. W. (2005). Mesh saliency. ACM Transactions on Graphics (ACM SIGGRAPH 2005), 24(3), 659–666. Google Scholar
  20. Leou, J., & Tsai, W. (1987). Automatic rotational symmetry determination for shape analysis. Pattern Recognition, 20(6), 571–582. CrossRefGoogle Scholar
  21. Levin, D. T., Takarae, Y., Miner, A., & Keil, F. C. (2001). Efficient visual search by category: specifying the features that mark the difference between artifacts and animals in preattentive vision. Perception and Psychophysics, 63(4), 676–697. Google Scholar
  22. Lian, Z., Rosin, P. L., & Sun, X. (2008). A rectilinearity measurement for 3D meshes. In Proc. ACM international conference on multimedia information retrieval (MIR’08) (pp. 395–402). Google Scholar
  23. Loncaric, S. (1998). A survey of shape analysis techniques. Pattern Recognition, 31(8), 983–1001. CrossRefGoogle Scholar
  24. MeshLab1.1.0 (2008). http://meshlab.sourceforge.net/.
  25. Ohbuchi, R., & Hata, Y. (2006). Combining multiresolution shape descriptors for 3D model retrieval. In Proc. WSCG 2006. Google Scholar
  26. Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics, 21(4), 807–832. CrossRefGoogle Scholar
  27. Paquet, E., & Rioux, M. (1999). Nefertiti: a query by content system for three-dimensional model and image databases management. Image and Vision Computing, 17(2), 157–166. CrossRefGoogle Scholar
  28. Paquet, E., Rioux, M., Murching, A., Naveen, T., & Tabatabai, A. (2000). Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication, 16(1–2), 103–122. CrossRefGoogle Scholar
  29. Petitjean, M. (2003). Chirality and symmetry measures: A transdisciplinary review. Entropy, 5, 271–312. zbMATHCrossRefMathSciNetGoogle Scholar
  30. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., & Funkhouser, T. (2006). A planar-reflective symmetry transform for 3D shapes. ACM Transactions on Graphics (ACM SIGGRAPH 2006), 549–559. Google Scholar
  31. Proffitt, D. (1982). The measurement of circularity and ellipticity on a digital grid. Pattern Recognition, 15(5), 383–387. CrossRefGoogle Scholar
  32. Rosin, P. L. (1999). Measuring rectangularity. Machine Vision and Applications, 11(4), 191–196. CrossRefMathSciNetGoogle Scholar
  33. Rosin, P. L. (2003). Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision and Applications, 14(3), 172–184. Google Scholar
  34. Rosin, P. L. (2008). A two-component rectilinearity measure. Computer Vision and Image Understanding, 109(2), 176–185. CrossRefMathSciNetGoogle Scholar
  35. Ruggeri, M. R., & Saupe, D. (2008, in press). Isometry-invariant matching of point set surfaces. In Proc. Eurographics workshop on 3D object retrieval. Google Scholar
  36. Shih, J., Hsing, C., & Wang, J. (2007). A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognition, 40(1), 283–295. zbMATHCrossRefGoogle Scholar
  37. Shilane, P., & Funkhouser, T. (2007). Distinctive regions of 3D surfaces. ACM Transactions on Graphics, 26(2), 659–666. CrossRefGoogle Scholar
  38. Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Proc. shape modeling applications (2004) (pp. 167–178). Google Scholar
  39. Sundar, H., Silver, D., Gavani, N., & Dickinson, S. (2003). Skeleton based shape matching and retrieval. In Proc. shape modeling international 2003 (SMI 2003) (pp. 130–139). Google Scholar
  40. Tangelder, J. W., & Veltkamp, R. C. (2008). A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications, 39(3), 441–471. CrossRefGoogle Scholar
  41. Tangelder, J. W. H., & Veltkamp, R. C. (2003). Polyhedral model retrieval using weighted point sets. In Proc. shape modeling international 2003 (SMI 2003) (pp. 119–129). Google Scholar
  42. The Stanford 3D Scanning Repository (2008). http://graphics.stanford.edu/data/3dscanrep/.
  43. Vazquez, P., Feixas, M., Sbert, M., & Heidrich, W. (2003). Automatic view selection using viewpoint entropy and its application to image-based modelling. Computer Graphics Forum, 22(4), 689–700. CrossRefGoogle Scholar
  44. Vranić, D. V. (2005). Desire: a composite 3D-shape descriptor. In Proc. IEEE international conference on multimedia and expo (ICME 2005). Google Scholar
  45. Vranić, D. V., Saupe, D., & Richter, J. (2001). Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In Proc. 2001 IEEE fourth workshop on multimedia signal processing (pp. 293–298). Google Scholar
  46. Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A., & Seidel, H. P. (2006). Towards stable and salient multi-view representation of 3d shapes. In Proc. IEEE international conference on shape modeling and applications (SMI 2006) (pp. 40–40). Google Scholar
  47. Yang, Y., Lin, H., & Zhang, Y. (2007). Content-based 3-D model retrieval: a survey. IEEE Trans. Systems, Man, and Cybernetics, 37(6), 1081–1098. CrossRefGoogle Scholar
  48. Zhang, C., & Chen, T. (2001a). Efficient feature extraction for 2D/3D objects in mesh representation. In Proc. international conference on image processing (ICIP 2001) (Vol. 3, pp. 935–938). Google Scholar
  49. Zhang, C., & Chen, T. (2001b). Indexing and retrieval of 3D models aided by active learning. In Proc. the ninth ACM international conference on multimedia (pp. 615–616). Google Scholar
  50. Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19. zbMATHCrossRefGoogle Scholar
  51. Žunić, J., & Rosin, P. L. (2003). Rectilinearity measurements for polygons. IEEE Transactions Pattern Analysis and Machine Intelligence, 25(9), 1193–1200. CrossRefGoogle Scholar
  52. Žunić, J., & Rosin, P. L. (2004). A new convexity measure for polygons. IEEE Transactions Pattern Analysis and Machine Intelligence, 26(7), 923–934. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingP.R. China
  2. 2.Cardiff School of Computer ScienceCardiff UniversityWalesUK

Personalised recommendations