International Journal of Computer Vision

, Volume 89, Issue 2–3, pp 327–347 | Cite as

Thesaurus-based 3D Object Retrieval with Part-in-Whole Matching

  • Alfredo FerreiraEmail author
  • Simone Marini
  • Marco Attene
  • Manuel J. Fonseca
  • Michela Spagnuolo
  • Joaquim A. Jorge
  • Bianca Falcidieno


Research in content-based 3D retrieval has already started, and several approaches have been proposed which use in different manner a similarity assessment to match the shape of the query against the shape of the objects in the database. However, the success of these solutions are far from the success obtained by their textual counterparts.

A major drawback of most existing 3D retrieval solutions is their inability to support partial queries, that is, a query which does not need to be formulated by specifying a whole query shape, but just a part of it, for example a detail of its overall shape, just like documents are retrieved by specifying words and not whole texts. Recently, researchers have focused their investigation on 3D retrieval which is solved by partial shape matching. However, at the extent of our knowledge, there is still no 3D search engine that provides an indexing of the 3D models based on all the interesting subparts of the models.

In this paper we present a novel approach to 3D shape retrieval that uses a collection-aware shape decomposition combined with a shape thesaurus and inverted indexes to describe and retrieve 3D models using part-in-whole matching. The proposed method clusters similar segments obtained trough a multilevel decomposition of models, constructing from such partition the shape thesaurus. Then, to retrieve a model containing a sub-part similar to a given query, instead of looking on a large set of subparts or executing partial matching between the query and all models in the collection, we just perform a fast global matching between the query and the few entries in the thesaurus. With this technique we overcame the time complexity problems associated with partial queries in large collections.


3D shape retrieval Part-in-whole matching Thesaurus Segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., & Azariadis, P. (2007). 3D mesh segmentation methodologies for cad applications. Computer-Aided Design and Applications, 4(6), 827–841. Google Scholar
  2. Anderberg, M. R. (1973). Cluster analysis for applications. San Diego: Academic Press. zbMATHGoogle Scholar
  3. Ansary, T. F., Daoudi, M., & Vandeborre, J. P. (2007a). A Bayesian 3D search engine using adaptive views clustering. IEEE Transactions on Multimedia, 9(1), 78–88. CrossRefGoogle Scholar
  4. Ansary, T. F., Daoudi, M., & Vandeborre, J. P. (2007b). 3d-models search engine from photos. In Proceedings of ACM international conference on image and video retrieval (CIVR 2007). Amsterdam, The Netherlands. Google Scholar
  5. Assfalg, J., Bimbo, A. D., & Pala, P. (2006). Content-based retrieval of 3d models through curvature maps: a cbr approach exploiting media conversion. Multimedia Tools and Applications, 31(1), 29–50. CrossRefGoogle Scholar
  6. Attene, M. (2006). ‘efpisoft’.
  7. Attene, M., Falcidieno, B., & Spagnuolo, M. (2006a). Hierarchical mesh segmentation based on fitting primitives. Visual Computer, 22(3), 181–193. CrossRefGoogle Scholar
  8. Attene, M., Biasotti, S., Mortara, M., Patanè, G., Spagnuolo, M., & Falcidieno, B. (2006b). Computational methods for understanding 3d shapes. Computers & Graphics, 30(3), 323–333 doi: 10.1016/j.cag.2006.02.007. CrossRefGoogle Scholar
  9. Baeza-Yates, R. A., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. Reading: Addison-Wesley. Google Scholar
  10. Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509–517. zbMATHCrossRefMathSciNetGoogle Scholar
  11. Bespalov, D., Shokoufandeh, A., Regli, W. C., & Sun, W. (2003). Scale-space representation of 3d models and topological matching. In Proceedings of the 8th ACM symposium on solid modeling and applications (pp. 208–215). New York: ACM Press. CrossRefGoogle Scholar
  12. Biasotti, S., Marini, S., Spagnuolo, M., & Falcidieno, B. (2006). Sub-part correspondence by structural descriptors of 3d shapes. Computer-Aided Design, 38(9), 1002–1019. CrossRefGoogle Scholar
  13. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks ISDN Systems, 30(1–7), 107–117. CrossRefGoogle Scholar
  14. Bustos, B., Keim, D. A., Saupe, D., Schreck, T., & Vranić, D. V. (2005). Feature-based similarity search in 3d object databases. ACM Computing Surveys, 37(4), 345–387. CrossRefGoogle Scholar
  15. Campbell, R. J., & Flynn, P. J. (2001). A survey of free-form object representation and recognition techniques. Computer Vision and Image Understanding, 81(2), 166–210. zbMATHCrossRefGoogle Scholar
  16. Chen, D. Y., Tian, X. P., Shen, Y. T., & Ouhyoung, M. (2003). On visual similarity based 3d model retrieval. Computer Graphics Forum, 22(3), 223–232. CrossRefGoogle Scholar
  17. Cormack, G. V., Palmer, C. R., & Clarke, C. L. A. (1998). Efficient construction of large test collections. In SIGIR’98: proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 282–289). New York: ACM. CrossRefGoogle Scholar
  18. Cornea, N. D., Demirci, M. F., Silver, D., Shokoufandeh, A., Dickinson, S. J., & Kantor, P. B. (2005). 3d object retrieval using many-to-many matching of curve skeletons. In SMI’05: proceedings of the international conference on shape modeling and applications 2005 (pp. 368–373). Los Alamitos: IEEE Computer Society. Google Scholar
  19. Crouch, C. J. (1988). A cluster-based approach to thesaurus construction. In SIGIR’88: proceedings of the 11th annual international ACM SIGIR conference on research and development in information retrieval (pp. 309–320). New York: ACM. CrossRefGoogle Scholar
  20. Curran, J. R., & Moens, M. (2002). Improvements in automatic thesaurus extraction. In Proceedings of the ACL-02 workshop on unsupervised lexical acquisition (pp. 59–66). Morristown: Association for Computational Linguistics. doi: 10.3115/1118627.1118635. CrossRefGoogle Scholar
  21. Fonseca, M. J., & Jorge, J. A. (2003). Indexing high-dimensional data for content-based retrieval in large databases. In Proceedings of the 8th international conference on database systems for advanced applications (DASFAA’03) (pp. 267–274). Los Alamitos: IEEE Computer Society. Google Scholar
  22. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., & Jacobs, D. (2003). A search engine for 3d models. ACM Transactions on Graphics, 22(1), 83–105. CrossRefGoogle Scholar
  23. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., & Dobkin, D. (2004). Modeling by example. ACM Transactions on Graphics, 23(3), 652–663. CrossRefGoogle Scholar
  24. Funkhouser, T., Kazhdan, M., Min, P., & Shilane, P. (2005). Shape-based retrieval and analysis of 3d models. Communications of the ACM, 48(6), 58–64. CrossRefGoogle Scholar
  25. Gal, R., & Cohen-Or, D. (2006). Salient geometric features for partial shape matching and similarity. ACM Transactions on Graphics, 25(1), 130–150. CrossRefGoogle Scholar
  26. Jayanti, S., Kalyanaraman, Y., Iyer, N., & Ramani, K. (2006). Developing an engineering shape benchmark for cad models. Computer-Aided Design, 39(9), 939–953. CrossRefGoogle Scholar
  27. Johnson, A. E., & Hebert, M. (1997). Recognizing objects by matching oriented points. In Proceedings of the 1997 conference on computer vision and pattern recognition (CVPR’97) (p. 684). Los Alamitos: IEEE Computer Society. CrossRefGoogle Scholar
  28. Joyce, T., & Needham, R. M. (1997). The thesaurus approach to information retrieval. Readings in information retrieval, pp. 15–20. Google Scholar
  29. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892. CrossRefGoogle Scholar
  30. Kazhdan, M. (2004). Shape representation and algorithms for 3d model retrieval. Ph.D. thesis, Princeton University. Google Scholar
  31. Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic representation of 3d shape descriptors. In L. Kobbelt, P. Schroder, & H. Hoppe (Eds.), Proceedings of the 2003 eurographics/ACM SIGGRAPH symposium on geometry processing (pp. 156–164). Aire-la-Ville: Eurographics Association. Google Scholar
  32. Kogan, J. (2007). Introduction to clustering large and high-dimensional data. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  33. Lloyd, S. P. (1982). Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2), 129–137. zbMATHCrossRefMathSciNetGoogle Scholar
  34. Lou, K., Prabhakar, S., & Ramani, K. (2004). Content-based three-dimensional engineering shape search. International conference on data engineering, p. 754. Google Scholar
  35. Lv, Q., Josephson, W., Wang, Z., Charikar, M., & Li, K. (2006). Ferret: a toolkit for content-based similarity search of feature-rich data. SIGOPS Operating Systems Review, 40(4), 317–330. CrossRefGoogle Scholar
  36. Milne, D. N., Witten, I. H., & Nichols, D. M. (2007). A knowledge-based search engine powered by wikipedia. In CIKM’07: proceedings of the sixteenth ACM conference on conference on information and knowledge management (pp. 445–454). New York: ACM. CrossRefGoogle Scholar
  37. Paquet, E., & Rioux, M. (1997). Nefertiti: A query by content software for three-dimensional models databases management. 3dim, p. 345. Google Scholar
  38. Ruge, G. (1997). Automatic detection of thesaurus relations for information retrieval applications. In Foundations of computer science: potential–theory–cognition (pp. 499–506). London: Springer. To Wilfried Brauer on the occasion of his sixtieth birthday. CrossRefGoogle Scholar
  39. Ruiz-Correa, S., Shapiro, L. G., & Meila, M. (2003). A new paradigm for recognizing 3-d object shapes from range data. In ICCV’03: proceedings of the ninth IEEE international conference on computer vision (p. 1126). Los Alamitos: IEEE Computer Society. CrossRefGoogle Scholar
  40. Shilane, P., & Funkhouser, T. (2007). Distinctive regions of 3d surfaces. ACM Transactions on Graphics, 26(2), 7. CrossRefGoogle Scholar
  41. Silverstein, C., Marais, H., Henzinger, M., & Moricz, M. (1999). Analysis of a very large web search engine query log. SIGIR Forum, 33(1), 6–12. CrossRefGoogle Scholar
  42. Suzuki, M. T., Kato, T., & Otsu, N. (2000). A similarity retrieval of 3d polygonal models using rotation invariant shape descriptors. In Proceedings of IEEE international conference on systems, man and cybernetics (Vol. 4, pp. 2946–2952). Los Alamitos: IEEE Computer Society. Google Scholar
  43. Suzuki, M. T., Yaginuma, Y., & Sugimoto, Y. Y. (2003). A 3d model retrieval system for cellular phones. In Proceedings of IEEE international conference on systems, man and cybernetics (Vol. 4, pp. 3846–3851). Los Alamitos: IEEE Computer Society. Google Scholar
  44. Suzuki, M. T., Yaginuma, Y., Yamada, T., & Shimizu, Y. (2005a). A partial shape matching method for 3d model databases. In Proceedings of the ninth IASTED international conference on software engineering and applications (SEA2005) (pp. 389–394). Calgary: ACTA Press. Google Scholar
  45. Suzuki, M. T., Yaginuma, Y., & Shimizu, Y. (2005b). A partial shape matching technique for 3d model retrieval systems. In ACM SIGGRAPH 2005 posters (p. 128). New York: ACM Press. CrossRefGoogle Scholar
  46. Tierny, J., Vandeborre, J. P., & Daoudi, M. (2009). Partial 3d shape retrieval by reeb pattern unfolding. Computer Graphics Forum, 28, 41–55. CrossRefGoogle Scholar
  47. Vranić, D. V. (2004). 3d model retrieval. Ph.D. thesis, University of Leipzig, Germany. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alfredo Ferreira
    • 1
    Email author
  • Simone Marini
    • 2
  • Marco Attene
    • 2
  • Manuel J. Fonseca
    • 1
  • Michela Spagnuolo
    • 2
  • Joaquim A. Jorge
    • 1
  • Bianca Falcidieno
    • 2
  1. 1.Department of Computer Science and EngineeringINESC-ID/IST/Technical University of LisbonLisbonPortugal
  2. 2.Instituto di Matematica Applicata e Tecnologie InformaticheConsiglio Nazionale delle RicercheGenovaItaly

Personalised recommendations