Advertisement

International Journal of Computer Vision

, Volume 89, Issue 2–3, pp 248–265 | Cite as

Spectral-Driven Isometry-Invariant Matching of 3D Shapes

  • Mauro R. Ruggeri
  • Giuseppe Patanè
  • Michela Spagnuolo
  • Dietmar Saupe
Article

Abstract

This paper presents a matching method for 3D shapes, which comprises a new technique for surface sampling and two algorithms for matching 3D shapes based on point-based statistical shape descriptors. Our sampling technique is based on critical points of the eigenfunctions related to the smaller eigenvalues of the Laplace-Beltrami operator. These critical points are invariant to isometries and are used as anchor points of a sampling technique, which extends the farthest point sampling by using statistical criteria for controlling the density and number of reference points. Once a set of reference points has been computed, for each of them we construct a point-based statistical descriptor (PSSD, for short) of the input surface. This descriptor incorporates an approximation of the geodesic shape distribution and other geometric information describing the surface at that point. Then, the dissimilarity between two surfaces is computed by comparing the corresponding sets of PSSDs with bipartite graph matching or measuring the L 1-distance between the reordered feature vectors of a proximity graph. Here, the reordering is given by the Fiedler vector of a Laplacian matrix associated to the proximity graph. Our tests have shown that both approaches are suitable for online retrieval of deformed objects and our sampling strategy improves the retrieval performances of isometry-invariant matching methods. Finally, the approach based on the Fiedler vector is faster than using the bipartite graph matching and it has a similar retrieval effectiveness.

Keywords

Isometry-invariant matching 3D model retrieval Feature points Local statistical shape descriptors Laplace-Beltrami operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baloch, S., Krim, H., Kogan, I., & Zenkov, D. (2005). Rotation invariant topology coding of 2D and 3D objects using Morse theory. In Proc. of the IEEE international conference on image processing 2005 (pp. 796–799). Google Scholar
  2. Banchoff, T. (1967). Critical points and curvature for embedded polyhedra. Journal of Differential Geometry, 1, 245–256. zbMATHMathSciNetGoogle Scholar
  3. Biasotti, S., Marini, S., Spagnuolo, M., & Falcidieno, B. (2006). Sub-part correspondence by structural descriptors of 3D shapes. Computer-Aided Design, 38(9), 1002–1019. CrossRefGoogle Scholar
  4. Biasotti, S., Giorgi, D., Patané, G., Reuter, M., & Spagnuolo, M. (2008). Discrete Laplace-Beltrami operators for shape analysis (IMATI-CNR Technical Report N. 8/2008). Google Scholar
  5. Bremer, P.-T., Edelsbrunner, H., Hamann, B., & Pascucci, V. (2004). A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4), 385–396. CrossRefGoogle Scholar
  6. Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006). Efficient computation of isometry-invariant distances between surfaces. SIAM Journal on Scientific Computing, 28(5), 1812–1836. zbMATHCrossRefMathSciNetGoogle Scholar
  7. Bronstein, A. M., Bronstein, M. M., Carmon, Y., & Kimmel, R. (2009). Partial similarity of shapes using a statistical significance measure. Computer Vision and Application, 1, 105–114. CrossRefGoogle Scholar
  8. Brunelli, R., & Mich, O. (2001). Histograms analysis for image retrieval. Pattern Recognition, 34(8), 1625–1637. zbMATHCrossRefGoogle Scholar
  9. Brusco, M. J., & Stahl, S. (Eds.) (2005). Branch-and-bound applications in combinatorial data analysis. Berlin: Springer. zbMATHGoogle Scholar
  10. Bustos, B., Keim, D. A., Saupe, D., Schreck, T., & Vranić, D. V. (2005). Feature-based similarity search in 3D object databases. ACM Computing Surveys, 37(4), 345–387. CrossRefGoogle Scholar
  11. Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008). Sparse points matching by combining 3D mesh saliency with statistical descriptors. Computer Graphics Forum, 27(2), 643–652. CrossRefGoogle Scholar
  12. Chung, F. R. K. (1997). Spectral graph theory. Providence: American Mathematical Society. zbMATHGoogle Scholar
  13. Cook, W., & Rohe, A. (1999). Computing minimum-weight perfect matchings. Journal on Computing, 11(2), 138–148. zbMATHMathSciNetGoogle Scholar
  14. Darom, T., Ruggeri, M., Saupe, D., & Kiryati, N. (2006). Compression of textured surfaces represented as surfel sets. Signal Processing: Image Communication, 21(9), 770–786. CrossRefGoogle Scholar
  15. Elad, A., & Kimmel, R. (2003). On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1285–1295. CrossRefGoogle Scholar
  16. Elad, M., Tal, A., & Ar, S. (2002). Content based retrieval of vrml objects: an iterative and interactive approach. In Proc. of the Eurographics workshop on multimedia (pp. 107–118). Google Scholar
  17. Eldar, I., Lindenbaum, M., Porat, M., & Zeevi, I. I. (1997). The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9), 1305–1315. CrossRefGoogle Scholar
  18. Fiedler, M. (1975). A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Mathematical Journal, 25, 619–633. MathSciNetGoogle Scholar
  19. Fomenko, A., & Kunii, T. L. (1997). Topological modelling for visualization. Berlin: Springer. Google Scholar
  20. Funkhouser, T., & Shilane, P. (2006). Partial matching of 3D shapes with priority-driven search. In Proc. of the symposium on geometry processing (pp. 131–142). Google Scholar
  21. Gal, R., & Cohen-Or, D. (2006). Salient geometric features for partial shape matching and similarity. ACM Transactions on Graphics, 25(1), 130–150. CrossRefGoogle Scholar
  22. Gal, R., Shamir, A., & Cohen-Or, D. (2007). Pose-oblivious shape signature. IEEE Transactions on Visualization and Computer Graphics, 13(2), 261–271. CrossRefGoogle Scholar
  23. Gelfand, N., Mitra, N. J., Guibas, L. J., & Pottmann, H. (2005). Robust global registration. In Proc. of symposium on geometry processing (p. 197). Google Scholar
  24. Hamza, A. B., & Krim, H. (2003). Geodesic object representation and recognition. In International conference on discrete geometry for computer imagery (pp. 378–387). Google Scholar
  25. Hilaga, M., Shinagawa, Y., Kohmura, T., & Kunii, T. L. (2001). Topology matching for fully automatic similarity estimation of 3D shapes. In ACM siggraph (pp. 203–212). Google Scholar
  26. Isenburg, M., & Lindstrom, P. (2005) Streaming meshes. In Proc. of visualization (pp. 231–238). Google Scholar
  27. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259. CrossRefGoogle Scholar
  28. Jain, V., & Zhang, H. (2007). A spectral approach to shape-based retrieval of articulated 3D models. Computer Aided Design, 39, 398–407. CrossRefGoogle Scholar
  29. Katz, S., & Tal, A. (2003). Hierarchical mesh decomposition using fuzzy clustering and cuts. In ACM siggraph (pp. 954–961). Google Scholar
  30. Kimmel, R., & Sethian, J. A. (1998). Computing geodesics on manifolds. In Proc. of national academy of sciences (Vol. 95, pp. 8431–8435). Google Scholar
  31. Koren, Y., Carmel, L., & Harel, D. (2002). Ace: a fast multiscale eigenvectors computation for drawing huge graphs. In Proc. of the IEEE symposium on information visualization (p. 137). Google Scholar
  32. Korte, B., & Vygen, J. (Eds.) (2000). Combinatorial optimization, theory and algorithms. Berlin: Springer. zbMATHGoogle Scholar
  33. Lee, C. H., Varshney, A., & Jacobs, D. W. (2005). Mesh saliency. ACM Transactions on Graphics, 24(3), 659–666. CrossRefGoogle Scholar
  34. Li, X., & Guskov, I. (2005). Multi-scale features for approximate alignment of point-based surfaces. In Proc. of the symposium on geometry processing (pp. 217–226). Google Scholar
  35. Ling, H., & Okada, K. (2006). Diffusion distance for histogram comparison. In IEEE conference on computer visualization and pattern recognition (pp. 246–253). Google Scholar
  36. Liu, Y.-S., Liu, M., Kihara, D., & Ramani, K. (2007). Salient critical points for meshes. In Proc. of symposium on solid and physical modeling (pp. 277–282). Google Scholar
  37. Mateus, D., Cuzzolin, F., Horaud, R., & Boyer, E. (2007). Articulated shape matching using locally linear embedding and orthogonal alignment. In IEEE international conference on computer vision (pp. 1–8). Google Scholar
  38. Mémoli, F. (2007). On the use of Gromov-Hausdorff distances for shape comparison. In Proc. of the symposium on point-based graphics (pp. 81–90). Google Scholar
  39. Mémoli, F., & Sapiro, G. (2005). Distance functions and geodesics on submanifolds of R d and point clouds. SIAM Journal of Applied Mathematics, 65(4), 1227–1260. zbMATHCrossRefGoogle Scholar
  40. Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5(3), 313–347. zbMATHCrossRefMathSciNetGoogle Scholar
  41. Milnor, J. (1963). Annals of mathematics studies: Vol. 51. Morse theory. Princeton: Princeton University Press. zbMATHGoogle Scholar
  42. Moenning, C., & Dodgson, N. A. (2003). Fast marching farthest point sampling. In Computer graphics forum. Google Scholar
  43. Mortara, M., & Patanè, G. (2002). Shape-covering for skeleton extraction. International Journal of Shape Modelling, 8(2), 245–252. Google Scholar
  44. Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., & Rossignac, J. (2004). Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica, 38(1), 227–248. zbMATHCrossRefMathSciNetGoogle Scholar
  45. Nehab, D., & Shilane, P. (2004). Stratified point sampling of 3D models. In Proc. of the symposium on point-based graphics (pp. 49–56). Google Scholar
  46. Ni, X., Garland, M., & Hart, J. C. (2004). Fair Morse functions for extracting the topological structure of a surface mesh. In ACM siggraph (pp. 613–622). Google Scholar
  47. Ohbuchi, R., Osada, K., Furuya, T., & Banno, T. (2008). Salient local visual features for shape-based 3D model retrieval. In Proc. of shape modeling international 2004 (pp. 93–102). Google Scholar
  48. Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics, 21(4), 807–832. CrossRefGoogle Scholar
  49. Ovsjanikov, M., Sun, J., & Guibas, J. (2008). Global intrinsic symmetries of shapes. In Eurographics symposium on geometry processing (SGP). Google Scholar
  50. Patanè, G., Spagnuolo, M., & Falcidieno, B. (2009, to appear). A minimal contouring approach to the computation of the Reeb graph. IEEE Transactions on Visualization and Computer Graphics. Google Scholar
  51. Pauly, M., Gross, M., & Kobbelt, L. P. (2002). Efficient simplification of point-sampled surfaces. In Proc. of visualization (pp. 163–170). Google Scholar
  52. Pauly, M., Keiser, R., Kobbelt, L. P., & Gross, M. (2003). Shape modeling with point-sampled geometry. In ACM siggraph (pp. 641–650). Google Scholar
  53. Press, W. H., Vetterling, W. T., Teukolsky, S. A., & Flannery, B. P. (2007). Numerical recipes in C++: the art of scientific computing (3rd edn.) Cambridge: Cambridge University Press. Google Scholar
  54. Qiu, H., & Hancock, E. R. (2003). Graph partition for matching. In Graph based representations in pattern recognition (Vol. 2726, pp. 178–189). Google Scholar
  55. Raviv, D., Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2007). Symmetries of non-rigid shapes. In IEEE workshop on non-rigid registration and tracking through learning. Google Scholar
  56. Reuter, M., Wolter, F.-E., & Peinecke, N. (2006). Laplace-Beltrami spectra as Shape-DNA of surfaces and solids. Computer-Aided Design, 38(4), 342–366. CrossRefGoogle Scholar
  57. Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., & Spagnuolo, M. (2009, to appear). Discrete Laplace-Beltrami operators for shape analysis and segmentation. Computer & Graphics. Google Scholar
  58. Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99–121. zbMATHCrossRefGoogle Scholar
  59. Ruggeri, M. R., & Saupe, D. (2008). Isometry-invariant matching of point set surfaces. In Proc. of the Eurographics workshop on 3D object retrieval. Google Scholar
  60. Ruggeri, M. R., Darom, T., Saupe, D., & Kiryati, N. (2006). Approximating geodesics on point set surfaces. In Proc. of the symposium on point-based graphics (pp. 85–93). Google Scholar
  61. Rustamov, R. M. (2007). Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proc. of the symposium on geometry processing (pp. 225–233). Google Scholar
  62. Schwartz, J., Steger, A., & Weißl, A. (2005). Fast algorithms for weighted bipartite matching. In Experimental and efficient algorithms (Vol. 3503, pp. 476–487). Google Scholar
  63. Sumner, R. W., & Popović, J. (2004). Deformation transfer for triangle meshes. In ACM siggraph (pp. 399–405). Google Scholar
  64. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., & Hoppe, H. (2005). Fast exact and approximate geodesics on meshes. ACM siggraph, 24(3), 553–560. CrossRefGoogle Scholar
  65. Tangelder, J. W. H., & Veltkamp, R. C. (2004). A survey of content based 3D shape retrieval methods. In Proc. of shape modeling international 2004 (pp. 145–156). Google Scholar
  66. Turk, M., & Pentland, A. (1991). Face recognition using eigenfaces. In IEEE conference on computer vision and pattern recognition (pp. 586–591). Google Scholar
  67. Vallet, B., & Levy, B. (2008). Spectral geometry processing with manifold harmonics. Computer Graphics Forum, 27(2), 251–260. CrossRefGoogle Scholar
  68. Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2), 119–152. CrossRefGoogle Scholar
  69. Zhang, H., & Liu, R. (2005). Mesh segmentation via recursive and visually salient spectral cuts. In Proc. of vision, modeling, and visualization (pp. 429–436). Google Scholar
  70. Zhang, H., van Kaick, O., & Dyer, R. (2007). Spectral methods for mesh processing and analysis. In Proc. of Eurographics state-of-the-art report (pp. 1–22). Google Scholar
  71. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., & Tagliasacchi, A. (2008). Deformation-drive shape correspondence. Symposium on Geometry Processing, 27(5), 431–1439. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mauro R. Ruggeri
    • 1
  • Giuseppe Patanè
    • 2
  • Michela Spagnuolo
    • 2
  • Dietmar Saupe
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
  2. 2.Istituto di Matematica Applicata e Tecnologie InformaticheConsiglio Nazionale delle RicercheRomaItaly

Personalised recommendations