Advertisement

International Journal of Computer Vision

, Volume 85, Issue 2, pp 192–207 | Cite as

Active, Foveated, Uncalibrated Stereovision

  • James P. Monaco
  • Alan C. Bovik
  • Lawrence K. Cormack
Article

Abstract

Biological vision systems have inspired and will continue to inspire the development of computer vision systems. One biological tendency that has never been exploited is the symbiotic relationship between foveation and uncalibrated active, binocular vision systems. The primary goal of any binocular vision system is the correspondence of the two retinal images. For calibrated binocular rigs the search for corresponding points can be restricted to epipolar lines. In an uncalibrated system the precise geometry is unknown. However, the set of possible geometries can be restricted to some reasonable range; and consequently, the search for matching points can be confined to regions delineated by the union of all possible epipolar lines over all possible geometries. We call these regions epipolar spaces. The accuracy and complexity of any correspondence algorithm is directly proportional to the size of these epipolar spaces. Consequently, the introduction of a spatially variant foveation strategy that reduces the average area per epipolar space is highly desirable. This paper provides a set of sampling theorems that offer a path for designing foveation strategies that are optimal with respect to average epipolar area.

Keywords

Foveation Binocular active vision Stereovision Registration Nonuniform sampling Space-variant sensing Epipolar geometry Disparity Uncalibrated stereo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloimonos, J., Weiss, I., & Bandyopadhyay, A. (1987). Active vision. In Proceedings of the first international conference on computer vision (pp. 35–54). Google Scholar
  2. Ballard, D. (1991). Animate vision. Artificial Intelligence Journal, 48, 57–86. CrossRefGoogle Scholar
  3. Basu, A. (1992). Optimal discretization for stereo reconstruction. Pattern Recognition Letters, 13(11), 813–820. CrossRefGoogle Scholar
  4. Blakemore, C. (1970). The range and scope of binocular depth discrimination in man. Journal of Physiology, 211(3), 599–622. Google Scholar
  5. Bough, E. W. (1970). Stereoscopic vision in the macaque monkey: a behavioural demonstration. Nature, 225(5227), 42–44. CrossRefGoogle Scholar
  6. Bovik, A. C. (2000). The handbook of image & video processing. San Diego: Academic Press. Google Scholar
  7. Chen, Q. S., & Deconinck, F. (1994). Foveal-view stereopsis using symmetric phase-only matched filtering. Proceedings of SPIE (The International Society for Optical Engineering), 2233, 46–53. Google Scholar
  8. Crowell, J. A., & Banks, M. S. (1993). Perceiving heading with different retinal regions and types of optic flow. Perception Psychophysics, 53(3), 325–337. Google Scholar
  9. Davis, F. A. (1929). The anatomy and histology of the eye and orbit of the rabbit. Transactions American Ophthalmological Society, 27, 401–441. Google Scholar
  10. Dhond, U. R., & Aggarwal, J. (1989). Structure from stereo—a review. IEEE Transactions on Systems, Man and Cybernetics, 19(6), 1489–1510. CrossRefMathSciNetGoogle Scholar
  11. Dräger, U. C., & Olsen, J. F. (1980). Origins of crossed and uncrossed retinal projections in pigmented and albino mice. Journal of Comparative Neurology, 191(3), 383–412. CrossRefGoogle Scholar
  12. Easter, S. S. (1972). Pursuit eye movements in goldfish (carassius auratus). Vision Research, 12(4), 673–688. CrossRefGoogle Scholar
  13. Elnagar, A. (1998). Optimal error discretization under depth and range constraints. Pattern Recognition Letters, 19(9), 879–888. CrossRefGoogle Scholar
  14. Faugeras, O. D., Luong, Q. T., & Maybank, S. J. (1992). Camera self calibration: Theory and experiments. In Proceedings of the Second European Conference on Computer Vision (Vol. 588, pp. 321–334). Google Scholar
  15. Fite, K. V., & Rosenfield-Wessels, S. (1975). A comparative study of deep avian foveas. Brain, Behavior and Evolution, 12(1–2), 97–115. CrossRefGoogle Scholar
  16. Fox, R., Lehmkuhle, S. W., & Bush, R. C. (1977). Stereopsis in the falcon. Science, 197(4298), 79–81. CrossRefGoogle Scholar
  17. Geisler, W. S., & Perry, J. S. (1998). Real-time foveated multiresolution system for low-bandwidth video communication. In B. E. Rogowitz & T. N. Pappas (Eds.) Society of photo-optical instrumentation engineers (SPIE) conference series (Vol. 3299, pp. 294–305). Bellingham: SPIE. Google Scholar
  18. Hespanha, J., Dodds, Z., Hager, G., & Morse, A. (1999). What tasks can be performed with an uncalibrated stereo vision system? International Journal of Computer Vision, 35(1), 65–85. CrossRefGoogle Scholar
  19. Horn, B. (1986). Robot vision. Cambridge: MIT Press. Google Scholar
  20. Howard, I., & Rogers, B. (1995). Binocular vision and stereopsis. London: Oxford University Press. Google Scholar
  21. Jenkin, M., Jepson, A., & Tsotsos, J. (1991). Techniques for disparity measurement. Computer Vision, Graphics, and Image Processing: Image Understanding, 53(1), 14–30. zbMATHGoogle Scholar
  22. Kaiser, M. K., & Hecht, H. (1995). Time-to-passage judgments in nonconstant optical flow fields. Perception Psychophysics, 57(6), 817–825. Google Scholar
  23. Klarquist, W. N., & Bovik, A. C. (1998). Fovea: A foveated vergent active stereo vision system for dynamic three-dimensional scene recovery. IEEE Transactions on Robotics and Automation, 14(5), 755–770. CrossRefGoogle Scholar
  24. Lee, S., Pattichis, M., & Bovik, A. (2001). Foveated video compression with optimal rate control. IEEE Transactions on Image Processing, 10(7), 977–992. zbMATHCrossRefMathSciNetGoogle Scholar
  25. Li, F., & Zhou, Y. (1999). Disparity estimation based on frequency domain. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 33(5), 516–519. Google Scholar
  26. Manzotti, R., Gasteratos, A., Metta, G., & Sandini, G. (2001). Disparity estimation on log-polar images and vergence control. Computer Vision and Image Understanding, 83(2), 97–117. zbMATHCrossRefGoogle Scholar
  27. Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity. Science, 194(4262), 283–287. CrossRefGoogle Scholar
  28. Marr, D., & Poggio, T. (1979). A computational theory of human stereo vision. Philosophical Transactions of the Royal Society B: Biological Sciences, 204(1156), 301–328. CrossRefGoogle Scholar
  29. Monaco, J., Bovik, A., & Cormack, L. (2007a). Epipolar spaces and optimal sampling strategies. IEEE International Conference on Image Processing, 6, VI-545–VI-548. Google Scholar
  30. Monaco, J., Bovik, A., & Cormack, L. (2007b). Epipolar spaces for active binocular vision systems. IEEE International Conference on Image Processing, 6, VI-549–VI-551. Google Scholar
  31. Monaco, J. P., Bovik, A. C., & Cormack, L. K. (2008). Nonlinearities in stereoscopic phase-differencing. IEEE Transactions on Image Processing, 17(9), 1672–1684. CrossRefGoogle Scholar
  32. Nielsen, K. R., & Poggio, T. (1984). Vertical image registration in stereopsis. Vision Research, 24(10), 1133–1140. CrossRefGoogle Scholar
  33. Olver, P., & Shakiban, C. (2009, in preparation). Fundamentals of applied mathematics. New York: Prentice-Hall. Google Scholar
  34. Ptito, M., Lepore, F., & Guillemot, J. P. (1991). Stereopsis in the cat: behavioral demonstration and underlying mechanisms. Neuropsychologia, 29(6), 443–464. CrossRefGoogle Scholar
  35. Rapaport, D. H., & Stone, J. (1984). The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience, 11(2), 289–301. CrossRefGoogle Scholar
  36. Ross, C. (1996). An adaptive explanation for the origin of the anthropoidea. American Journal of Primatology, 40(2), 205–230. CrossRefGoogle Scholar
  37. Sandini, G., & Tistarelli, M. (1990). Active tracking strategy for monocular depth inference over multiple frames. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1), 13–27. CrossRefGoogle Scholar
  38. Sanger, T. (1988). Stereo disparity computation using Gabor filters. Biological Cybernetics, 59, 405–418. CrossRefGoogle Scholar
  39. Schindler, K., & Bischof, H. (2004). The epipolar geometry of the log-polar image plane. Proceedings of the International Conference on Pattern Recognition, 4, 40–43. Google Scholar
  40. Schreiber, K., Crawford, J. D., Fetter, M., & Tweed, D. (2001). The motor side of depth vision. Nature, 410(6830), 819–822. CrossRefGoogle Scholar
  41. Schreiber, K. M., & Tweed, D. B. (2003). Influence of eye position on stereo matching. Strabismus, 11(1), 9–16. CrossRefGoogle Scholar
  42. Schwartz, E., Tootell, R. B., Silverman, M. S., Switkes, E., & Valois, R. L. D. (1985). On the mathematical structure of the visuotopic mapping of macaque striate cortex. Science, 227(4690), 1065–1066. CrossRefGoogle Scholar
  43. Schwartz, E. L. (1980). A quantitative model of the functional architecture of human striate cortex with application to visual illusion and cortical texture analysis. Biological Cybernetics, 37(2), 63–76. CrossRefGoogle Scholar
  44. Shah, S., & Aggarwal, J. (1994). Depth estimation using stereo fish-eye lenses. Proceedings of the IEEE International Conference on Image Processing, 2, 740–744. CrossRefGoogle Scholar
  45. Shih, S. W., Hung, Y. P., & Lin, W. S. (1998). Calibration of an active binocular head. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 28(4), 426–442. CrossRefGoogle Scholar
  46. Snyder, A., Bossomaier, T., & Hughes, A. (1986). Optical image quality and the cone mosaic. Science, 231(4737), 499–501. CrossRefGoogle Scholar
  47. Stevenson, S. B., & Schor, C. M. (1997). Human stereo matching is not restricted to epipolar lines. Vision Research, 37(19), 2717–2723. CrossRefGoogle Scholar
  48. Strang, G. (1988). Linear algebra and its applications. San Diego: Harcourt Brace Jovanovich. Google Scholar
  49. Thompson, I. (1991). Vision and visual dysfunction, Vol. 2. Boca Raton: CRC Press (Chap. 7, pp. 136–151). Google Scholar
  50. Tiao, Y. C., & Blakemore, C. (1976). Regional specialization in the golden hamster’s retina. Journal of Comparative Neurology, 168(4), 439–457. CrossRefGoogle Scholar
  51. Tistarelli, M., & Sandini, G. (1991). Direct estimation of time-to-impact from optical flow. In Proceedings of the IEEE workshop on visual motion (pp. 226–233). Google Scholar
  52. Tootell, R. B., Silverman, M. S., Switkes, E., & Valois, R. L. D. (1982). Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science, 218(4575), 902–904. CrossRefGoogle Scholar
  53. Virsu, V., & Hari, R. (1996). Cortical magnification, scale invariance and visual ecology. Vision Research, 36(18), 2971–2977. CrossRefGoogle Scholar
  54. Wang, Z., & Bovik, A. C. (2001). Embedded foveation image coding. IEEE Transactions on Image Processing, 10(10), 1397–1410. zbMATHCrossRefGoogle Scholar
  55. Wathey, J. C., & Pettigrew, J. D. (1989). Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl tyto alba. Brain, Behavior Evolution, 33(5), 279–292. CrossRefGoogle Scholar
  56. Wei, J., & Li, Z. N. (1998). Efficient disparity-based gaze control with foveate wavelet transform. IEEE International Conference on Intelligent Robots and Systems, 2, 866–871. Google Scholar
  57. Weiman, C. F. (1995). Binocular stereo via log-polar retinas. Proceedings of SPIE—The International Society for Optical Engineering, 2488, 309–320. Google Scholar
  58. van der Willigen, R. F., Frost, B. J., & Wagner, H. (1998). Stereoscopic depth perception in the owl. Neuroreport, 9(6), 1233–1237. CrossRefGoogle Scholar
  59. Yeshurun, Y., & Schwartz, E. L. (1999). Cortical hypercolumn size determines stereo fusion limits. Biological Cybernetics, 80(2), 117–129. zbMATHCrossRefGoogle Scholar
  60. Zeevi, Y., & Shlomot, E. (1993). Nonuniform sampling and antialiasing in image representation. IEEE Transactions on Signal Processing, 41(3), 1223–1236. zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • James P. Monaco
    • 1
  • Alan C. Bovik
    • 1
  • Lawrence K. Cormack
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of Texas at AustinAustinUSA
  2. 2.Department of PsychologyUniversity of Texas at AustinAustinUSA

Personalised recommendations