Advertisement

International Journal of Computer Vision

, Volume 85, Issue 3, pp 223–236 | Cite as

3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding

  • Kelvin R. RochaEmail author
  • Ganesh Sundaramoorthi
  • Anthony J. Yezzi
  • Jerry L. Prince
Article
  • 123 Downloads

Abstract

We present a variational method for unfolding of the cortex based on a user-chosen point of view as an alternative to more traditional global flattening methods, which incur more distortion around the region of interest. Our approach involves three novel contributions. The first is an energy function and its corresponding gradient flow to measure the average visibility of a region of interest of a surface with respect to a given viewpoint. The second is an additional energy function and flow designed to preserve the 3D topology of the evolving surface. The third is a method that dramatically improves the computational speed of the 3D topology preservation approach by creating a tree structure of the 3D surface and using a recursion technique. Experiments results show that the proposed approach can successfully unfold highly convoluted surfaces such as the cortex while preserving their topology during the evolution.

Keywords

Visibility Visibility maximization Topology preservation Cortex Surface flattening Surface unfolding Active polyhedron Area preservation Variational method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, A., Cantarella, J., Fu, J., Ghomi, M., & Howard, R. (2003). Circles minimize most knot energies. Topology, 42, 381–394. zbMATHCrossRefMathSciNetGoogle Scholar
  2. Alexandrov, O., & Santosa, F. (2005). A topology-preserving level set method for shape optimization. Journal of Computational Physics, 204, 121–130. zbMATHCrossRefMathSciNetGoogle Scholar
  3. Angenet, S., Haker, S., Tannenbaum, A., & Kikinis, R. (1999). On the Laplace-Bertrami operator and brain surface flattening. IEEE Transactions on Medical Imaging, 18(80), 700–711. CrossRefGoogle Scholar
  4. Cantarella, J. H., Demaine, E. D., Iben, H. N., & O’Brian, J. F. (2004). An energy-driven approach to linkage unfolding. In: Proceedings of the 20th symposium on computational geometry, pp. 134–143. Google Scholar
  5. Carman, G. J., Drury, H. A., & Van Essen, D. C. (1995). Computational methods for reconstructing and unfolding the cerebral cortex. Cerebra Cortex, 5, 506–517. CrossRefGoogle Scholar
  6. Durant, F. (1999). 3D visibility: analysis, study and applications. Ph.D. thesis, University J. Fourier, Grenoble, France. Google Scholar
  7. Fischl, B., Sereno, M., & Dale, A. (1999). Cortical surface-based analysis. Neuroimage, 9, 195–207. CrossRefGoogle Scholar
  8. Han, C., Xu, D., Tosun, D., & Prince, J. L. (2001). Cortical surface reconstruction using a topology preserving geometric deformable model. In Proceedings of fifth IEEE workshop on mathematical methods in biomedical image analysis (MMBIA’01) (pp. 213–220). Google Scholar
  9. Han, X., Xu, C., & Prince, J. L. (2003). A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6), 755–768. CrossRefGoogle Scholar
  10. Hermosillo, G., Faugeras, O., & Gomes, J. (1999). Cortex unfolding using level set methods. Technical report 3663, INRIA. Google Scholar
  11. Hertzmann, A., & Zorin, D. (2000). Illustrating smooth surfaces. In Proceedings SIGGRAPH, pp. 517–526. Google Scholar
  12. Iben, H. N., O’Brien, J. R., & Demaine, E. D. (2006). Refolding planar polygons. In: Proceedings of the 22nd symposium on computational geometry, pp. 71–79. Google Scholar
  13. Le Guyader, C., & Vese, L. (2007). Self-repelling snakes for topology segmentation models. Technical report, UCLA. Google Scholar
  14. O’Hara, J. (1991). Energy of a knot. Topology, 30, 241–247. zbMATHCrossRefMathSciNetGoogle Scholar
  15. Osher, S., & Sethian, J. (1988). Fronts propagating with curvature-dependent speed: algorithms based on the Hamilton-Jacobi equations. Journal of Computational Physics, 79, 12–49. zbMATHCrossRefMathSciNetGoogle Scholar
  16. Pons, J.-P., Keriven, R., & Faugeras, O. (2004). Area preserving cortex unfolding. In Proceedings of international conference on medical image computing and computer assisted intervention (MICCAI’04) (pp. 376–383). Google Scholar
  17. Pope, A. R. (1994). Model-based object recognition: a survey of recent research. Technical report TR-94-04, University of British Columbia, Department of Computer Science. Google Scholar
  18. Rocha, K., Yezzi, A., Mennucci, A., & Prince, J. L. (2007). Viewpoint-based visibility maximizing flows. In Proceedings of international conference on medical image computing and computer assisted intervention (MICCAI’07) (pp. 499–506). Google Scholar
  19. Sapiro, G., & Tannenbaum, A. (2005). Area and length preserving geometric invariant scale-spaces. Pattern Analysis and Machine Intelligence, 17(1), 67–72. CrossRefGoogle Scholar
  20. Segonne, F. (2008). Active contours under topology control genus preserving level sets. International Journal on Computer Vision, 79(2), 107–117. CrossRefGoogle Scholar
  21. Sethian, J. A., & Adalsteinsson, D. (1997). An overview of level set methods for etching, deposition, and lithography development. IEEE Transactions on Semiconductor Manufacturing, 10(1), 167–184. CrossRefMathSciNetGoogle Scholar
  22. Shi, Y., & Karl, W. C. (2004). Differentiable minimin shape distance for incorporating topological priors in biomedical imaging. In: IEEE international symposium on biomedical imaging, pp. 1247–1250. Google Scholar
  23. Slabaugh, G., & Unal, G. (2005). Active polyhedron: surface evolution theory applied to deformable meshes. In Proceedings of IEEE Computer Society conference on computer vision and pattern recognition (CVPR’05) (pp. 84–91). Google Scholar
  24. Sundaramoorthi, G., & Yezzi, A. (2005). More-than-topology-preserving flows for active contours and polygons. In Proceedings of the tenth IEEE international conference on computer vision (ICCV’05) (pp. 1276–1283). Google Scholar
  25. Unal, G., Yezzi, A., & Krim, H. (2005). Information-theoretic active polygons for unsupervised texture segmentation. International Journal of Computer Vision, 62(3), 199–220. CrossRefGoogle Scholar
  26. Wandell, B. A., Chial, S., & Backus, B. T. (2000). Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience, 12(5), 739–752. CrossRefGoogle Scholar
  27. Witkin, A., & Baraff, D. (1997). Physically based modeling: principles and practice. SIGGRAPH Course Notes, pp. 1–13. Google Scholar
  28. Woo, A., Poulin, P., & Fournier, A. (1990). A survey of shadow algorithms. IEEE Computer Graphics and Applications, 6(10), 13–32. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kelvin R. Rocha
    • 1
    Email author
  • Ganesh Sundaramoorthi
    • 1
  • Anthony J. Yezzi
    • 1
  • Jerry L. Prince
    • 2
  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations