Advertisement

Dynamic Texture Detection Based on Motion Analysis

  • Sándor Fazekas
  • Tomer AmiazEmail author
  • Dmitry Chetverikov
  • Nahum Kiryati
Article

Abstract

Motion estimation is usually based on the brightness constancy assumption. This assumption holds well for rigid objects with a Lambertian surface, but it is less appropriate for fluid and gaseous materials. For these materials an alternative assumption is required. This work examines three possible alternatives: gradient constancy, color constancy and brightness conservation (under this assumption the brightness of an object can diffuse to its neighborhood). Brightness conservation and color constancy are found to be adequate models. We propose a method for detecting regions of dynamic texture in image sequences. Accurate segmentation into regions of static and dynamic texture is achieved using a level set scheme. The level set function separates each image into regions that obey brightness constancy and regions that obey the alternative assumption. We show that the method can be simplified to obtain a less robust but fast algorithm, capable of real-time performance. Experimental results demonstrate accurate segmentation by the full level set scheme, as well as by the simplified method. The experiments included challenging image sequences, in which color or geometry cues by themselves would be insufficient.

Keywords

Dynamic texture Motion analysis Optical flow Level set Real-time processing Brightness conservation 

References

  1. Amiaz, T., & Kiryati, N. (2006). Piecewise-smooth dense optical flow via level sets. International Journal of Computer Vision, 68(2), 111–124. CrossRefGoogle Scholar
  2. Amiaz, T., Fazekas, S., Chetverikov, D., & Kiryati, N. (2007). Detecting regions of dynamic texture. In LNCS : Vol. 4485. Proc. SSVM 2007 (pp. 848–859). Berlin: Springer. Google Scholar
  3. Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2(3), 283–310. CrossRefGoogle Scholar
  4. Béréziat, D., Herlin, I., & Younes, L. (2000). A generalized optical flow constraint and its physical interpretation. In Proc. conf. comp. vision pattern rec. (pp. 487–492). Google Scholar
  5. Black, M. J., & Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1), 75–104. CrossRefGoogle Scholar
  6. Bouthemy, P., & Fablet, R. (1998). Motion characterization from temporal co-occurrences of local motion-based measures for video indexing. In Proc. int. conf. pattern recognition (Vol. 1, pp. 905–908). Google Scholar
  7. Boykov, Y. Y., & Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In 8th int. conf. on computer vision (Vol. 01, pp. 105–112). Google Scholar
  8. Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In LNCS : Vol. 3024. Proc. European conf. on computer vision (pp. 25–36). Berlin: Springer. Google Scholar
  9. Brox, T., Bruhn, A., & Weickert, J. (2006). Variational motion segmentation with level sets. In LNCS : Vol. 3951. Proc. European conf. on computer vision (pp. 471–483). Berlin: Springer. Google Scholar
  10. Bruce, V., Green, P. R., & Georgeson, M. (1996). Visual perception. Psychology Press. Google Scholar
  11. Burnham, K., & Anderson, D. (1998). Model selection and inference—a practical information-theoretic approach. Berlin: Springer. zbMATHGoogle Scholar
  12. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79. zbMATHCrossRefGoogle Scholar
  13. Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277. zbMATHCrossRefGoogle Scholar
  14. Chetverikov, D., & Péteri, R. (2005). A brief survey of dynamic texture description and recognition. In 4th int. conf. on computer recognition systems (pp. 17–26). Google Scholar
  15. Corpetti, T., Mémin, E., & Pérez, P. (2000). Adaptation of standard optic methods to fluid motion. In Int. symposium on flow visualization (pp. 1–10). Google Scholar
  16. Cremers, D., & Soatto, S. (2004). Motion competition: A variational approach to piecewise parametric motion segmentation. International Journal of Computer Vision, 62(3), 249–265. CrossRefGoogle Scholar
  17. Cuzol, A., & Mémin, E. (2005). Vortex and source particles for fluid motion estimation. In LNCS : Vol. 3459. Proc. scale-space 2005 (pp. 254–266). Berlin: Springer. Google Scholar
  18. Cuzol, A., Hellier, P., & Mémin, E. (2007). A low dimensional fluid motion estimator. International Journal of Computer Vision, 75(3), 329–349. CrossRefGoogle Scholar
  19. Dervieux, A., & Thomasset, F. (1979). A finite element method for the simulation of rayleigh-Taylor instability. In Lecture notes in mathematics (Vol. 771, pp. 145–158). Google Scholar
  20. Doretto, G., Chiuso, A., Soatto, S., & Wu, Y. N. (2003a). Dynamic textures. International Journal of Computer Vision, 51, 91–109. zbMATHCrossRefGoogle Scholar
  21. Doretto, G., Cremers, D., Favaro, P., & Soatto, S. (2003b). Dynamic texture segmentation. In Ninth int. conf. on computer vision (p. 1236). Google Scholar
  22. Doretto, G., Jones, E., & Soatto, S. (2004). Spatially homogeneous dynamic textures. In LNCS : Vol. 3022. Proc. European conf. on computer vision (pp. 591–602). Berlin: Springer. Google Scholar
  23. Fablet, R., & Bouthemy, P. (2003). Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 1619–1624. CrossRefGoogle Scholar
  24. Fazekas, S., Amiaz, T., Chetverikov, D., & Kiryati, N. (2007). Dynamic texture detection and segmentation. http://vision.sztaki.hu/~fazekas/dtsegm.
  25. Fazekas, S., & Chetverikov, D. (2005). Normal versus complete flow in dynamic texture recognition: A comparative study. In Int. workshop on texture analysis and synthesis (pp. 37–42). Google Scholar
  26. Fazekas, S., & Chetverikov, D. (2007). Analysis and performance evaluation of optical flow features for dynamic texture recognition. Signal Processing: Image Communication, 22, 680–691. Special issue on Content-Based Multimedia Indexing. CrossRefGoogle Scholar
  27. Fujita, K., & Nayar, S. (2003). Recognition of dynamic textures using impulse responses of state variables. In Int. workshop on texture analysis and synthesis (pp. 31–36). Google Scholar
  28. Galun, M., Apartsin, A., & Basri, R. (2005). Multiscale segmentation by combining motion and intensity cues. In Proc. conf. comp. vision pattern rec. (Vol. 1, pp. 256–263). Google Scholar
  29. Golland, P., & Bruckstein, A. M. (1997). Motion from color. Computer Vision and Image Understanding, 68(3), 346–362. CrossRefGoogle Scholar
  30. Hildreth, E. C. (1987). The analysis of visual motion: From computational theory to neural mechanisms. Annual Review of Neuroscience, 10, 477–533. CrossRefGoogle Scholar
  31. Horn, B. K. P. (1986). Robot vision. New York: McGraw-Hill. Google Scholar
  32. Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185–203. CrossRefGoogle Scholar
  33. Lu, Z., Xie, W., Pei, J., & Huang, J. (2005). Dynamic texture recognition by spatiotemporal multiresolution histograms. In Proc. of the IEEE workshop on motion and video computing (WACV/MOTION) (pp. 241–246). Google Scholar
  34. Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In DARPA image understanding workshop (pp. 121–130). Google Scholar
  35. Mileva, Y., Bruhn, A., & Weickert, J. (2007). Illumination-robust variational optical flow with photometric invariants. In LNCS : Vol. 4713. DAGM-Symposium (pp. 152–162). Berlin: Springer. Google Scholar
  36. Mumford, D., & Shah, J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42, 577–685. zbMATHCrossRefMathSciNetGoogle Scholar
  37. Murray, D. W., & Buxton, B. F. (1987). Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2), 220–228. CrossRefGoogle Scholar
  38. Nelson, R. C., & Polana, R. (1992). Qualitative recognition of motion using temporal texture. CVGIP: Image Understanding, 56, 78–89. zbMATHCrossRefGoogle Scholar
  39. Nir, T., Bruckstein, A. M., & Kimmel, R. (2008). Over-parameterized variational optical flow. International Journal of Computer Vision, 76(2), 205–216. CrossRefGoogle Scholar
  40. Ohta, N. (1989). Optical flow detection by color images. In IEEE int. conf. on image processing (pp. 801–805). Google Scholar
  41. Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 12–49. zbMATHCrossRefMathSciNetGoogle Scholar
  42. Otsu, N. (1979). A threshold selection method from gray level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9, 62–66. CrossRefGoogle Scholar
  43. Otsuka, K., Horikoshi, T., Suzuki, S., & Fujii, M. (1998). Feature extraction of temporal texture based on spatiotemporal motion trajectory. In Proc. int. conf. pattern recognition (Vol. 2, pp. 1047–1051). Google Scholar
  44. Papenberg, N., Bruhn, A., Brox, T., Didas, S., & Weickert, J. (2006). Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision, 67(2), 141–158. CrossRefGoogle Scholar
  45. Paragios, N., & Deriche, R. (2005). Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding, 97(3), 259–282. CrossRefGoogle Scholar
  46. Peh, C. H., & Cheong, L.-F. (2002). Synergizing spatial and temporal texture. IEEE Transactions on Image Processing, 11, 1179–1191. CrossRefMathSciNetGoogle Scholar
  47. Péteri, R., & Chetverikov, D. (2005). Dynamic texture recognition using normal flow and texture regularity. In LNCS (Vol. 3523, pp. 223–230). Berlin: Springer. Google Scholar
  48. Péteri, R., Huskies, M., & Fazekas, S. (2006). DynTex: A comprehensive database of Dynamic Textures. http://www.cwi.nl/projects/dyntex.
  49. Saisan, P., Doretto, G., Wu, Y. N., & Soatto, S. (2001). Dynamic texture recognition. In Proc. conf. comp. vision pattern rec. (Vol. 2, pp. 58–63). Kauai, Hawaii. Google Scholar
  50. Schnörr, C. (1984). Segmentation of visual motion by minimizing convex non-quadratic functionals. In Proc. int. conf. pattern recognition (pp. 661–663). Google Scholar
  51. Schoenemann, T., & Cremers, D. (2006). Near real-time motion segmentation using graph cuts. In LNCS (Vol. 4174, pp. 455–464). Berlin: Springer. Google Scholar
  52. Schunck, B. G. (1984). The motion constraints equation for optical flow. In Proc. int. conf. pattern recognition (Vol. 1, pp. 20–22). Google Scholar
  53. Shi, J., & Malik, J. (1998). Motion segmentation and tracking using normalized cuts. In Sixth int. conf. on computer vision (pp. 1154–1160). Google Scholar
  54. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. CrossRefGoogle Scholar
  55. Smith, J., Lin, C.-Y., & Naphade, M. (2002). Video texture indexing using spatiotemporal wavelets. In Proc. int. conf. on image processing (Vol. 2, pp. 437–440). Google Scholar
  56. Soatto, S., Doretto, G., & Wu, Y. (2001). Dynamic textures. In Eigth int. conf. on computer vision (Vol. 2, pp. 439–446). Google Scholar
  57. Song, S., & Leahy, R. M. (1991). Computation of 3d velocity fields from 3d cine images of a beating heart. IEEE Transactions on Medical Imaging, 1, 462–472. Google Scholar
  58. Sundaramoorthi, G., Yezzi, A., Mennucci, A. C., & Sapiro, G. (2007). New possibilities with Sobolev active contours. In LNCS : Vol. 4485. Proc. SSVM 2007 (pp. 153–164). Berlin: Springer. Google Scholar
  59. Szummer, M., & Picard, R. (1996). Temporal texture modeling. In Proc. int. conf. image processing (Vol. 3, pp. 823–826). Google Scholar
  60. Todorovic, D. (1996). A gem from the past: Pleikart Stumpf’s anticipation of the aperture problem, Reichardt detectors, and perceived motion loss at equiluminance. Perception, 25, 1235–1242. CrossRefGoogle Scholar
  61. Uras, S., Girosi, F., Verri, A., & Torre, V. (1988). A computational approach to motion perception. Biological Cybernetics, 60, 79–97. CrossRefGoogle Scholar
  62. Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3), 271–293. zbMATHCrossRefGoogle Scholar
  63. Wang, J. Y. A., & Adelson, E. H. (1994). Representing moving images with layers. IEEE Transactions on Image Processing, 3(5), 625–638. CrossRefGoogle Scholar
  64. Wildes, R. P., & Bergen, J. R. (2000). Qualitative spatiotemporal analysis using an oriented energy representation. In LNCS : Vol. 1843. Proc. European conf. on computer vision (pp. 768–784). Berlin: Springer. Google Scholar
  65. Wu, P., Ro, Y. M., Won, C. S., & Choi, Y. (2001). Texture descriptors in MPEG-7. In LNCS (Vol. 2124, pp. 21–28). Berlin: Springer. Google Scholar
  66. Yuan, L., Weng, F., Liu, C., & Shum, H.-Y. (2004). Synthersizing dynamic texture with closed-loop linear dynamic system. In LNCS : Vol. 3022. Proc. European conf. on computer vision (pp. 603–616). Berlin: Springer. Google Scholar
  67. Zheng, H., & Blostein, S. D. (1995). Motion-based object segmentation and estimation using the MDL principle. IEEE Transactions on Image Processing, 4(9), 1223–1235. CrossRefGoogle Scholar
  68. Zhong, J., & Scarlaroff, S. (2002). Temporal texture recongnition model using 3D features (Technical report). MIT Media Lab Perceptual Computing. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sándor Fazekas
    • 1
  • Tomer Amiaz
    • 2
    Email author
  • Dmitry Chetverikov
    • 1
  • Nahum Kiryati
    • 2
  1. 1.Computer and Automation Research InstituteBudapestHungary
  2. 2.School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations